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Introduction 

Network optimization models are a cornerstone of operations research, 

offering powerful tools to solve complex problems involving the flow of resources, 

information, or goods through interconnected systems. This paper delves into a 

variety of network problems, each addressing distinct challenges such as finding 

the shortest path, minimizing spanning trees, maximizing flow, and optimizing 

cost through networks. These models are not only theoretically robust but also 

highly applicable in real-world scenarios, from transportation and logistics to 

telecommunications and project management. By leveraging the structure of 

networks, these methods provide efficient solutions that often outperform 

general-purpose algorithms, making them indispensable in both academic and 

industrial settings.   

The chapter begins with a prototype example set in Seervada Park, 

illustrating practical applications of network optimization, such as determining 

the shortest tram route or laying telephone lines with minimal disruption. 

Subsequent sections explore fundamental terminology and methodologies, 

including directed and undirected networks, paths, cycles, and spanning trees. Key 

topics include the shortest-path problem, the minimum spanning tree problem, the 

maximum flow problem, and the network simplex method, each building on the 

previous to form a cohesive understanding of network optimization. Together, 

these topics provide a comprehensive toolkit for tackling a wide range. 

Prototype and Terminology 

The Seervada Park problem introduces a practical and intuitive prototype 

for applying the various methods described from this chapter. The Park needs to 

be strategic when it comes to sightseeing and hiking numbers to ensure 

preservation of the nature. The road system is shown below with straight line 

distances representing the windy and narrows park roads. Location O is the 

entrance to the park with roads leading around different points of interest, leading 

to Location T. Throughout many of the examples to come, the source or start will 

be O and the sink or destination will be T.  

Various scenarios will arise in the park that can be solved by the various 

methods presented in this chapter. First, the park wants to create a special tram 

line that fast tracks to the site T since it is so popular. Management wants to find 

the shortest such path so that tourists just want to visit site T can do so efficiently. 



A minimum path problem will be formulated and solved in order for the tram line 

to be carved through the network to satisfy the demand for site T. Second, the 

park wishes to install underground telecommunication wires to ensure all sites 

are connected for emergency communication lines. They wish to connect every site 

to the communication network while minimizing the amount of wire needed to be 

installed. A minimum spanning tree will be found through the park that equates to 

solving this telecommunication problem. Third, the park wishes to maximize the 

total number of visitors who can reach site T from a variety of path combinations. 

Finding the maximum flow will allow the park to keep as many trams as possible 

running constantly to maximize the amount of traffic to T. This equates to 

maximizing the flow through the network from the source point O to the 

destination T. Finally, the park would want to find the differing costs to send 

trams along various paths based on costs assigned to edges (not pictured below). 

There will then be designated paths that will cost tourists different amounts in 

order to travel across the network in specific ways. More detail will be added in 

order to formulate the minimum cost flow problem, and an entire simplex method 

will be drawn out in more detail, past this prototype example.  

 To understand Network optimization and the subsequent content, it will be 

vital to understand the terminology often used in this context. A network (also 

known as a graph), is a set of points, called nodes, connected by a set of lines, 

called edges or arcs. A set of nodes, also known as vertices, is often denoted by the 

letter V. Similarly, the set of all edges is denoted as the letter E. A network is the 

collection of V and E.  

When talking about the connectedness of two nodes, a simple edge is called 

an undirected arc. There is no information about the direction of data traveling 

from one place to another, just that there is an established connection or link. 



However, a directed arc contains information about a sender and a destination. In 

terms of network optimization, there is a supply node (the node supplying the 

data), which is sent along the directed arc to the demand node (the node receiving 

the data).  

 A network where all the edges in E are not directed is predictably called an 

undirected network. Undirected networks contain useful information regarding 

the connectedness of the graph but lacks directional information. Therefore, a 

network where the edges are directed is called a directed network. 

 In the more applied context of network optimization on a directed network, 

there are supply nodes (the node supplying the data), which are sent along the 

directed arc to the demand nodes (the node receiving the data). Any intermediate 

node is referred to as a transshipment node which acts like a middleman. The arc 

capacity of a directed edge is the allowable amount of data that can be sent alone 

that edge. In the context of the prototype example, imagining each road can only 

have a certain number of cars at a time, which would define its arc capacity. 

 A path is a set of unique (non-repeated) edges that connect two nodes in a 

network. For example, in Figure 1, a valid path connecting O to T would be OA – 

AD – DT. An invalid path would be OA – AD – DB – DC – CD – DT, since you D was 

hit twice. This idea of a path generalizes undirected and directed given the nature 

of the network being considered. A cycle is a directed path through a network that 

starts and ends at the same node. If O  B, B  C, and C  O, then that would 

form a cycle.  

Shortest Path 

 The shortest path problem is extremely common in graph theory and 

computer science applications. Finding the shortest viable path the links a given 

start and end node has been researched ad nauseum. It is essential to consider two 

different types of networks, weighted and unweighted. The essence of the problem 

is that considering all possible paths to the destination node, what is the optimal 

path that minimizes the total distance traveled.  

 In an unweighted graph, the solution follows a Breadth-first Search (BFS) 

approach. BFS is a fundamental graph traversal algorithm that explores graph 

level by level, starting from a designated source node. It systematically visits all 

nodes at a given distance from the source before moving on to nodes at the next 

level, making it especially useful for finding the shortest path in unweighted 

graphs. BFS uses a queue data structure to keep track of nodes to visit, ensuring 



that nodes are explored in order they are discovered. Its predictable traversal 

pattern and simplicity make it a key building block in many network algorithms, 

including those used in maximum flow and minimum cost computations. 

 However, in a weighted graph, a simple BFS solution is not robust enough 

due to the idea of local and global optimization. The local optimization solution 

would be to choose the shortest edge connected to the current node you are 

considering. However, it is possible to lose sight of the global optimal solution 

when doing simple BFS. There is a common algorithm that considers a minimum 

path through directed networks called Dijktra’s Algorithm. This algorithm falls 

outside of the scope of this paper but can be researched by the reader.  

 We will now consider the algorithm laid out by the text and then 

implemented by excel solver. You start by finding the nth nearest node to the 

origin at each iteration until that node is equal to the destination. This means for 

n=1, you consider all the paths from the origin to a  node where you only travel 

along 1 arc. For n=k, you consider all the paths from the origin to nodes where the 

path taken consisted of k number of arcs traversed. Once you reach the 

destination, you backtrack through the minimum connected distances from 

previous iterations to construct the shortest path. On the next page, the algorithm 

will be demonstrated on the prototype problem for the Seervada park.  
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Unsolved 

Closest 
Connected 

Unsolved 

Node 

Total 
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Last 

Connection 

1 O A 2 A 2 OA 

 

 

n 

Solved Node 

Connected to 
Unsolved 

Closest 
Connected 
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Node 
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Connection 

2 O C 4 C 4 OC 



 

 

n 
Solved Node 
Connected to 

Unsolved 

Closest 
Connected 

Unsolved 
Node 

Total 

Distance 

Nth 
Nearest 

Node 

Min 
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Connection 

3 A B 2+2=4 B 4 AB 
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4 

A 

B 

C 

D 

E 

E 

2+7=9 

4+3=7 

4+4=8 

E 7 BE 
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5 
A 
B 

E 

D 
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2+7=9 
4+4=8 

7+1=8 
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n 
Solved Node 
Connected to 

Unsolved 

Closest 

Connected 

Unsolved 
Node 

Total 

Distance 

Nth 
Nearest 

Node 

Min 

Distance 

Last 

Connection 

6 
D 

E 

T 

T 

8+5=13 

7+7=14 

T 

 

13 

 

DT 

 



 

OA → AB → BE → ED → DT Sum 

2 + 2 + 3 + 1 + 5 = 13 

 

So, from this algorithm, we have found the global minimum for this network. This 

solution found by this process is the purple path above with a minimum cost of 

travel through the network of 13 units. However, for networks any larger than this 

example problem, a computational approach will be taken. On the next page, the 

excel set up for the min path problem will be laid out.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Here is the set up for excel solver. We send one unit of flow through the 

system to minimize the cost. The cost is the sum product of the active arcs in the 

route (with a value of 1) multiplied by their distances. We see that the path given 

by excel matches the algorithm done above. See from the excel solver output 

below that the resulting shortest path solutions are the same.  

 

 
 



Minimum Spanning Tree 

A spanning tree is a set of edges that connect each node in a graph without 

creating cycles. A minimum spanning tree is the tree that minimizes this 

connectedness. The concept and algorithm are generally straight forward through 

example.  

The general algorithm is as follows. 

1. All nodes start disconnecting from each other 

2. Choose a node arbitrarily (Node O) and connect it to its closest (min 

distance) neighbor (node A) 

3. Identify the closest unconnected node to any of the connected nodes (closest 

neighbor to either O or A) 

4. Repeat this process until all nodes are distinctly connected 

In the illustration below, yellow nodes are ones that are solved and connected into 

the spanning tree. The blue highlighted edges represent the candidate weights for 

the next step in connection with the graph. The algorithm chooses the minimum of 

these blue candidates. Continue this pattern of solving nodes and considering 

candidates until no more nodes are disconnected.  

 

Iteration 1: Connect O to closest 

neighbor A 

 

Iteration 2: Connect A to B 

 



Iteration 3: Connect B to C 

 

Iteration 4: Connect B to E 

 

Iteration 5: Connect E to D 

 

Iteration 6: Connect D to T 

 

 

We now see that each node is connected to the network without any cycle 

appearing. Also note that the sum of the connecting edges is the minimum such 

configuration. In the case of the park, these are the routes along which the 

minimum amount of wire must be laid in order to fully connect the park’s 

communication systems. 



Maximum Flow Problem 

The maximum flow problem stands as a fundamental problem type in the 

realm of network optimization due to its wide range of applications it supports. 

From the allocation of resources in supply chains to the routing of data in 

telecommunications networks, the ability to determine the most efficient flow 

through a network under given constraints is vital. The core premise is 

maximizing the amount of flow from a designated source to a designated sink. The 

applications of this powerful class of problems recur across engineering, 

economics, logistics, and computer science. This section builds on the theoretical 

foundation of the max flow model, expanding it to accommodate various practical 

extensions that reinforce its real-world applicability. 

In this section, we’ll explore advanced algorithmic techniques, such as 

capacity scaling, integral flows, minimum cuts, and strong duality relationships. 

These developments underscore the significance of this problem class, not merely 

as an academic exercise, but as a toolkit for modeling and solving complex 

systems. Ultimately, this aims to improve the readers' understanding of flow-

based optimization by introducing them to the breadth of scenarios in which the 

max flow problem and its variants can be applied. 

 

 

This is the initial network 

diagram. The numbers 

coming out of a node 

demonstrate the arc supply. 

Take the arc OA for 

example. OA can send 5 

units across this arc and the 

corresponding 0 and node A 

indicates that nothing has 

been sent through A along 

this arc yet. 

 



Iteration 1 begins with 

sending 5 units through the 
system. Traced in purple is 

the path along which these 5 

units travel, O → B → E → T. 

Notice the residual 

capacities along this line. 

Before, the arc OB had a 
capacity of 7, but now it has 

a capacity of 7-5=2.  

 

Iteration 2 starts with the 
network after the first 

iteration, so now there are 

8-5=3 units being sent 

through this path O → A → 

D → T. Not the updated 

residual network and 
capacities. 

 

Iterations 3 and 4 are drawn 

in the same diagram. See 

that one unit is sent along 

the purple path O → A → B 

→ D → T, and that two units 
are sent along the blue path 

O → B → D → T. This results 

in a total network flow of 

8+1+2=11 thus far.  

Iterations 5 and 6 are also 

shown in the same diagram. 

Quiz for the reader: see if 

you can derive how many 

units are being sent across 
each highlighted path. One 

unit is being sent across the 

blue path O → C → E → D → 

T and one unit is sent along 

the purple path O → C → E 
→ T. 

 



Finally, the 7th iteration is 

also the final iteration after 
one unit is sent along O → C 

→ E → B → D → T. We have 

now sent as many units 

through the network as 

possible and we stop the 

algorithms process. 

 

Notice this is the final 

solution since there is no 

way to ship more units into 

D. Every entering arc into D 

has an arc allowance of 0. 
This means that you could 

start to ship along other 

feasible arcs, but none of 

those units will reach T due 

to the D bottleneck. 

 

 

The max-flow min-cut theorem is a fundamental result in network 

optimization that establishes a deep connection between the maximum flow in a 

network and the concept of minimum cuts. A cut in a network is a partition of the 

nodes into two disjoint sub graphs, separating the source from the sink, and its 

capacity is the sum of the capacities of all arcs crossing the cut in the direction 

from the source to the sink. The theorem states that the maximum flow from the 

source to the sink is equal to the minimum capacity across all possible cuts in the 

network. This method not only provides a powerful tool for verifying optimality in 

maximum flow problems but also offers insights into the bottlenecks and critical 

pathways that constrain flow within the network. 

In the min cut below, we see that the sum of arcs being cut are 

3+4+1+6=14. Note that 14 is the optimal solution from the method shown above. 

Note that this method requires cutting all possible cuts in the network and for the 

problem of this size of larger, it is not feasible to find the optimal this way. 

However, taking an arbitrary cut gives you a firm upper bound for the feasible 

optimal solution.  

 



 



Minimum Cost Flow 

Consider a directed and connected network with n nodes and at least one 

supply node and one demand node. With this definition, we can establish a 

minimum cost network flow in which supply = demand and the cost to ship all 

units through the network is minimized. Below defines the necessary variables to 

formulate this optimization model. 

 

● 𝑥௜௝ - the flow through the arc i → j 

● 𝑐௜௝ - the cost per unit flow through the arc i → j 

● 𝑢௜௝ - the arc capacity (max flow) through the arc i → j 

● 𝑏௜  - the net flow generated at node i 

○ 𝑏௜ > 0 - if node i is a supply node 

○ 𝑏௜ < 0 - if node i is a demand node 

○ 𝑏௜ = 0 - if node i is a transshipment node 

 

Objective: Minimize 𝑊 =  ∑ ∑ 𝑐௜௝𝑥௜௝
௡
௝ୀଵ

௡
௜ୀଵ   

Subject to:  

∑ 𝑥௜௝
௡
௝ୀଵ − ∑ 𝑥௝௜

௡
௝ୀଵ = 𝑏௜ for each node i  

and 0 ≤  𝑥௜௝ ≤  𝑢௜௝ for each arc i → j 

 

 In other words, get the total cost for each arc i → j which is the product of 

the amount of units being shipped across that arc and the cost per one unit. The 

constraints state that the total flow out of node i to j subtracted by the total flow 

into node i from j is equal to 𝑏௜ and that the total flow across any arc must not 

exceed its arc capacity constraint. Please see the illustration below to see 

application of this nomenclature. 



 
 In yellow are the supply nodes because they have a positive net flow value. 

Node A can ship 50 units throughout the network. The red node, C, is the 

transshipment node since it has a net flow of 0. The magnitude of units received 

by a transshipment node will always equal the magnitude shipped away from it. 

And in blue, the demand nodes, characterized by their negative net flows. More is 

being received than sent out.  

 Highlighted in green are the costs for each arc. 𝐶஺஽ = 9 meaning that one 

unit shipped from A → D costs 9 units of cost. And finally in purple are the arc 

capacities. A → B can only send 10 units at most, and arc C → E can send 80 units 

at most. Note that any unconstrained arc could theoretically be any positive real 

number, so long as the entire net balance of the network is 0. 

 Notice that in network flow optimization models, such as the minimum cost 

flow problem, the set up includes a flow conservation constraint at each node to 

ensure that inflow equals outflow, adjusted by any supply or demand. However, 

because the total supply must equal total demand for a feasible flow to exist, these 

constraints are not all independent. Specifically, only n-1 of the n flow constraint 

equations are linearly independent; the remaining constraint can be derived from 

the others. This reflects the underlying structure of the network, where the flow 



values possess n-1 degrees of freedom. Including all n constraints can therefore 

lead to redundancy and, in some cases, degeneracy in the simplex solution space, 

where multiple basic feasible solutions correspond to the same vertex in the 

feasible region. To avoid this and simplify the model, it is standard practice to 

omit one of the constraints, without loss of generality or correctness. 

So, what would a feasible solution look like? The basis (which is a vector of 

primal flow values) would satisfy all the constraints below. Picking a starting 

basis can be tricky however, since the net flow across the entire network must 

balance. In the section regarding the network simplex method, algorithms used to 

establish a basis feasible vector will be detailed.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 



Here is the result of the min cost flow network problem after using Excel 

solver. We see that the flow through the system is net zero since all of the supply 

and demands for a respective node match their net flow constraint value. Also, the 

arc capacity constraints are met (highlighted in grey). This means that the 

minimum cost to ship units across and through this network is 490. We will see 

later that a problem given in context will illustrate the importance of this type of 

problem.  

 

 
 

 

 

 

 



Generalizations of Min Cost Flow 

The min cost flow problem is the pinnacle of network optimization models 

because of its robustness and ability to generalize for many types of network 

inputs. This is the reason why an entire simplex method was developed and why 

there is so much research in the application of network optimization.  

Above, the set up for an optimization model was defined on a very nice and 

average network for min cost flow. However, there are several special cases where 

some slight modifications can allow for the network simplex method to be applied 

on related problems. 

The Transportation Problem developed in the previous chapter does have 

its own method for solving it, but it can be modified to fit the network model 

above. To augment this problem, a supply node provides flow for each source and 

a demand node is receiving flow from each destination. In this way, there are no 

transshipment nodes, and the flow from supply to demand equates to the flow 

across a generic arc i → j corresponding to source and destination. This structure 

allows the transportation problem to be represented as a special case of the 

minimum cost flow problem, where all arcs are directed from supply nodes to 

demand nodes, and capacities are typically infinite or sufficiently large to 

accommodate all feasible shipments. By mapping supply and demand directly to 

node balances in a network, we gain the flexibility to apply network-based 

algorithms, such as the network simplex method, while preserving the original 

cost-minimization objective of the transportation model. 

 The Assignment Problem is solvable when supply and demand are equal, 

and each source gets sent to uniquely one destination. To formulate it as a 

minimum cost flow problem, the number of supply and demand nodes must be 

equal, and the net flow at all supply nodes must be 1, whereas the net flow at each 

demand node is -1. This means each supply wants to send out exactly 1 unit of 

flow, and since there are equal number of demand nodes, each supply will map to 

exactly one demand node, thereby neutralizing the network. The arcs picked to be 

the “assignment vectors” (if you will) and the cost can easily be minimized with 

the network simplex method. 

 The Transshipment Problem case is actually very close to the min cost 

flow problem, except that there are no arc capacity constraints in this problem 

type. The Transshipment Problem is frequently used as a generalization of the 

transportation problem, where there can be transshipment nodes between source 

and destination. It turns out that many shipping problems in application have 



these intermediate points, so the minimum cost flow setup is very applicable with 

not much augmentation at all.  

The Shortest Path Problem discussed earlier in this chapter is very 

common in graph theory and computer science algorithms. There are well defined 

search algorithms across weighted networks, namely Dijkstra’s algorithm. 

However, it involves several advanced data structures and some algorithmic 

thinking that is a big specialized. Since the shortest path is typically done with an 

undirected graph, each arc i → j will get an accompanying arc j → i. The weight of 

the complementary arc will just be the same weight (typically distance) as the 

original arc. Then, the given supply node will have a supply of one unit and find 

the shortest path (minimum cost) to get its one unit to the demand node with 

demand one. Every intermediate node will have a net supply of 0 and the path 

traced will be the minimum cost route to traverse the network.  

The Maximum Flow Problem, with three main adjustments, falls well into 

the formulation for the min cost flow problem. Firstly, you set all arc costs to 0 

since the goal of this problem is to find the maximum units that are able to be 

shipped across the network, not necessarily the cost. Next, find value F, which is a 

safe upper bound for the maximum amount of flow that can be sent through this 

network. Some sort of min cut approximation can be done, but the goal is to 

choose an upper bound that is comfortably large so that the max flow can be sent, 

and excess can be ignored. Send F through the supply and have the destination 

have a demand of F. Thirdly, create an arc directly from source to sink with a cost 

of big M. In this way, all flow will be sent through the network because the arcs 

have no cost. Once it is not possible to send any more flow through arcs with filled 

capacity, ship the remaining units from F along the source to sink arc. The 

difference in F and what was shipped across the big M arc will be the max flow for 

the network. 

I hope it is apparent how powerful the minimum cost flow problem 

becomes, and why there will be such emphasis placed on understanding the 

network simplex method for this problem type. So many other optimization 

problems seen in previous sections with their own unique methods can all be 

generalized as one standard method after some augmentation of the original 

problem.   

 

 

 

 



Network Simplex Method 

When setting up a simplex, we first must start with a basic feasible 

solution. In linear programming, we start at the origin and then work through the 

simplex method, traveling to corner points and assessing their optimality. So, 

what would be the equivalent in the network application? What does a basic 

feasible solution look like? 

 

 
  

This implies that a spanning tree solution is a basis. Whether that basis is 

feasible or not is to be discussed, but an MST is automatically a basis. For a 

spanning tree solution to be feasible, you must find a set of flow weights that 

result in a totally balanced tree. This means that the net flow over the network is 

0. To achieve this, all of the edges in that spanning tree are basic 𝑥௜௝ > 0 and all 

the arcs not included in this solution are non-basic, 𝑥௜௝ = 0. It turns out that these 

non-basic arcs have dual slack values that correspond to reduced cost when they 

enter, similar to the LP simplex method. When all of the dual slack variables are 

also non-negative, implying the overall cost cannot be reduced further, this 

indicates the optimal. We will later discover this is guaranteed by strong duality of 

solving both the primal and dual problem simultaneously. 

Since our objective function is to minimize cost across a given flow network, 

we want to visualize this by transforming the supply/cost network to a flow 

network. We wish to maximize the flow around the network while keeping in 

mind the cost weight of each basic arc. Ultimately, we will have a diagram that 

shows the primal flow variables, the dual optimization variables (related to cost), 

and the dual slack variables (related to reduced cost). The definitions of all three 

will be built out in the following sections. 

We will begin with this supply/cost diagram showing the shipment cost for 

units around this connected and directed network. For the network simplex 

method to work, we assume a root node which typically doubles as the supply 

node. However, note that a valid network in the simplex method may not have a 

clearly defined source and sink nodes, but can be easily modified to accommodate 

that. For example, with this network, we treat node a as the root node. This allows 

us to have a clearly defined node when we are talking about the minimum 



spanning tree. Since trees must have a root by definition, 

this will become handy in the following procedure.  

There are designated algorithms to generate a 

valid basis on a network. We know that it must be a 

spanning tree, but there are complex and optimized 

methods to achieve this. For the purpose of this paper, 

we will assume that generating this initial basis is taken 

care of by one of these algorithms. For the curious 

reader, the algorithms rely on graph traversal algorithms 

such as breadth first search or depth first search. 

 

Primal flow variables 

We wish to find the flow in the network that will result in overall balance at 

the root node a. To achieve this, we start at the terminal ‘leaf’ nodes and ship all 

of their supply through the basis to the root. Note that shipping supply in the 

opposite direction of an arc is the same as sending a negative amount. Better yet, 

think of this as the demand node saying, “we needed x less units to be balanced”. 

Below, see the first step and final step, assuming the reader 

can follow the algorithm to fill in the gaps as an exercise.  

 The process begins at the leaf node h which has a 

supply of -6 as the start. We send -6 backwards along the 

edge ‘h-i’ so that the primal flow value is -(-6) = 6. This 

results in node i has to send 6 units to satisfy that new arc 

(which has flow 6). This results in node i now having a supply 

of -5 == a demand of -5. We now ask the reader to continue 

working up the tree toward the root node, assigning primal 

flow values and updating the supply at each node until you 

reach the root with supply 0. 

 Some work is shown below, tracing the steps in 

the process for the reader's aid. The numbers 

underlined in red are the primal flow variables. This 

means that the basis composed of these arcs is primal 

feasible since the flow values are all non-negative. 

Since this is a basis, we have found a feasible solution 

to the network problem. The optimal value would be 

the flow values (underlined in red) times the cost to 

ship across each respective edge. 



Dual optimization variables 

 Since we know a dual optimization variable is related to the constraints in 

the primal problem, these values should relate to the cost of flow in from the 

supply/cost diagram. It turns out that a dual optimization variable is the shadow 

price for that node. If you send one more unit along the network, the optimization 

value increases by that unit amount. More formally, the dual optimization variable 

at a node i is the price to ship one unit from the root, along the basis, to that node. 

Similar to as above, I will lay out the algorithm, then trace the first step, leaving 

the exercise to the reader.  Our objective is to start with the root node and ship a 

unit along our given basis to find the price.  

 

Dual Slack 

 Recall the definitions of 𝑥௜௝ , 𝑐௜௝, 𝑢௜௝ , 𝑏௜  which correspond to the flow, cost, 

capacity and net flow at a given arc i → j. We will add a definition for the dual 

slack of a non-basic arc so that the primal network simplex method becomes 

clearer. The dual slack is defined as 𝑆௜௝  =  𝑝௜௝ − 𝑝௕௝. where  𝑝௜௝ is defined as the cost 

to send one unit along the basic arcs to i and then to j and 𝑝௕௝ is defined as the cost 

to send one unit along the basic arcs straight to j. Let us use our prototype 

example for this section to illustrate this. 

Here is a given supply and cost diagram of a 

network. In blue, is the initial basic feasible solution. 

Later, the method to generate an initial BFS will be 

discussed. 𝑝௛௚ is denoted in the red line and 𝑝௕௚ is the 

green line. See that the sum traveling along the red line is 

𝑝௛௚= -1 + -8 + -2 + 15 + 4 + 2 = 10 and 𝑝௕௚ = -1 + -8 + -2 + -

7 = -18. So the dual slack for the non-basic arc h → g is 10 - 

- 18 = 28. This means that if the arc h → g was to enter the 



basis, the total cost to the objective function would be a 28 unit increase. 

This implies that similar to the LP simplex method, we will choose non-basic 

elements that have negative coefficients, since they will result in a minimization 

to our objective function.  

 

Flow Diagram 

So here is our final picture. We have the primal 

basis which is the red arcs defining a spanning tree of 

the network. It turns out that this basis is also primal 

feasible since all of the arcs in the basis are non-

negative. However, we know that our solution is not 

optimal because of the -6 on the arc d → i and the -1 on 

the arc e → d. To interpret, this means that if the arc d → 

i enters, our optimal solution will decrease by a unit cost 

of 6. We will next explore how this arc can enter the 

basis, what a primal network pivoting strategy looks like, and how we know when 

we reach true optimality.  

 

Primal Pivoting 

 Now that we have our complete flow diagram 

containing all necessary information for the primal 

simplex method, let us understand the strategy for a 

pivot. In the above diagram, two dual infeasible arcs 

were identified, d → i and e → d. Let us choose d → i 

since it has a larger negative value.  

 Recalling that our basis is definitionally a spanning 

tree which means that any entering arc will form a cycle 

in our network. Pictured here, we see the dark blue arc 

which is our entering arc. Within the cycle there are two 

types of arcs, positive and negative. Positive arcs in the 

cycle point in the same direction as the entering arc, 

whereas negative arcs point in the opposite direction.  

 Let us consider this figure here. We note that the 

arc v6 → v1 enters and will enter with a primal flow 

value of t. In order to balance this cycle, the following 

results fall out. In order for v6 to have a supply of 0, it 

must send t units to v1. That node already had a flow of f1, so it must now send its 



original f1 as well as the t it just received along to v2. Now, v2 is already receiving 

f1 and f2. We can think of this as v2 asking v3 “send me t units fewer than what 

you were sending me before so I can be balanced”. This pattern continues until 

you get this flow diagram of the cycle above.  

 Great, we have a non-feasible dual arc that will enter our basis and become 

primal feasible. We must now find an arc to exit. Recall that a non-primal feasible 

arc has a flow value of 0. This means we must choose the value of t such that one 

of the orange candidate arcs is 0. See that t = f2, then the arc v3 → v2 will be 0 

and leave the basis, while preserving the overall balance of the network. So, this 

means after an arc enters the network to create a cycle, we choose the opposite 

direction arc with the smallest value.  

Take our example from above where we will allow 

d → i to enter the basis. Out of the candidate orange arcs 

to leave the basis. We see that either arc d → c or c → b 

can exit the basis. Note that this is a degenerate solution, 

and the choice is arbitrary. Since t = 3, we will 

recompute the primal flow variables. Arcs f → e and e → 

b will add 3 to their magnitudes. Arcs f → i, d → c, and c 

→ b will subtract 3. Note that c → b will exit the network 

and become non-basic and d → c will still be in the basis 

but have a value of 0. Note that recomputing all of the 

primal flows, dual slack, and dual optimization is non-

trivial but has been covered in detail before, so we leave this exercise to the 

reader. There are also some tricks to make the recomputation quicker by hand, but 

that falls outside of the scope of this paper. 

 

Dual Pivot 

Here is the problem used to illustrate dual 

pivoting. A few things to note in this problem. Firstly, 

this flow network is dual optimal. We know this because 

all of the dual slack values on non-basic arcs are non-

negative. We should also note that this network is 

definitely not primal feasible because of the several basic 

arcs that are negative. 

The first step in the dual pivoting strategy is to 

identify the basic arc leaving. In this case we see that d 

→ b should be removed since it is the most negative 



value. After removing this arc, we see that our spanning 

tree is split and there is a separate subgraph. Then, a 

candidate for an entering arc is simply one that connects 

the sub graphs and maintains a spanning tree. In this case, 

see the arcs that cross the red triangular circle defining 

the disconnected subgraph. An arc with the same direction 

as the exiting arc will enter and will send the flow out. In 

this case, c → h will enter the basis and be sending 8 units 

out.  

 

Before pivoting: 

● The leaving arc (u, v) will be primal infeasible: 𝑥௨௩ < 0. 

● The entering arc (s, t) will be dual feasible: 𝑑௦௧ ≥ 0. 

After pivoting: 

● The leaving arc (u, v) must have  𝑥௨௩ = 0 and 𝑑௨௩ ≥ 0. 

● The entering arc (s, t) must have 𝑑௦௧ = 0 and ideally 𝑥௦௧ ≥ 0. 

● The new basis must be dual feasible. 

 

 

Two phase solver method 

 Now that the concepts of primal and dual pivoting have been established 

and outlined, a generalized network simplex method can be done. The general idea 

is to solve for a feasible primal or dual basis and then use that basis to solve the 

other problem. When you have a basis that solves both problems, you are 

guaranteed the optimal solution by strong duality.  

 Let us lay out the dual first simplex method. Given a network G, create a 

network such that any spanning tree is dual feasible. We know that a dually 

feasible basis is when all non-basic arcs are non-negative. We construct G’ to be 

the supply and cost network G, where cost arcs are set to 0. This way, any basis 

must be dual feasible since the dual slack values for the non-basic arcs will be 0. 

Let us call this transformed basis B’.  

 We take B’, a dual feasible and (likely) primal infeasible basis, and drop it 

into G’. We solve the basis using primal pivots so that B’ is both primal and dual 

feasible in G’. Then, transform B’ back into G, noting that B’ is now primal feasible 

(solved in the previous stage) but likely not dual feasible back in G. Next, taking 

the primally feasible B’, solve with the dual simplex method on graph G such that 



you result in a primal and dual feasible basis B which corresponds to the optimal 

solution.  

 Note that there is a primal first simplex method that follows the exact same 

steps, with some slight modifications. In this method, G’ has all of its vertex 

supplies set equal to 0 so that all of the primal flow values are 0 and the basis 

vector B’ will be primally feasible in G’. 

 

 

 

 

 

 

 

 

 

 

 

Here is the initial supply and cost 

network to set up the problem. An 

algorithm is performed to generate a 

spanning tree solution, regardless of 

primal or dual feasibility. 

Here is the initial basis. Looking at the 

blue numbers, we see it is neither 

prime nor dual feasible. Two of the 

primal flow values are negative on arcs 

b → a and c → d. This basis is also dual 

infeasible because of the negative dual 

slack value on the arc f → i.  

  



After setting all cost values on every 

arc to 0, we see that our initial basis B’ 

is pictures on the graph G’ below. The 

dual pivoting simplex method will now 

be performed to make B’ dual feasible 

in G’. 

Here is the matching flow diagram 

after the dual pivoting technique has 

been finished. The basis B’ is now dual 

feasible in G’ and will be translated 

back to G. 

  

After solving B’ so that it was dual 

feasible in G’, it is now placed into G. 

We see that the basis B’ is not dual 

feasible because of the arc f → i and 

the primal pivoting strategy must be 

performed. 

Here is our final basis B that is both 

primal and dual feasible in G. This is 

our optimal basis vector. 

  



Case Study 9.1 p420 

Introduction 

 Jake Nguyen, the manager of Asian foreign investment for Grant Hill 

Associates, faces a financial disaster due to a sudden collapse in the Japanese 

market, which has triggered a broader East Asian financial crisis. Despite prior 

warnings, Jake had significantly increased the firm’s investment in Japan, raising 

the stake from $2.5 million to $15 million just one month before the crisis. At the 

time of investment, the exchange rate was 1 USD to 80 JPY, but after the 

devaluation, the rate has shifted to 1 USD to 125 JPY, leading to massive losses 

upon conversion back to U.S. dollars. 

In response to the crisis, Grant Hill, the firm's president, orders Jake to 

immediately liquidate all holdings in Japan, Indonesia, and Malaysia and transfer 

the funds into U.S. bonds. However, the process is complicated by three factors. 

Firstly, the Japanese yen has sharply depreciated, significantly reducing the value 

of the firm’s investments when converted back to U.S. dollars. Second, different 

banks charge varying fees for currency exchanges, increasing the importance of 

choosing the most cost-effective conversion path. Lastly, East Asian governments 

have placed strict limits on how much foreign currency can be withdrawn from 

their economies to prevent further financial instability. 

 To address this problem, Jake must develop an optimal strategy to liquidate 

and transfer the firm’s holdings, minimizing losses due to exchange rates, 

transaction costs, and withdrawal limits. I will aim to solve his issue and give a 

minimized cost solution using techniques for network optimization. 

 Jake starts with holdings in Yen, Rupiah, and Ringgit. In order to correctly 

formulate the minimum cost flow problem such that the supply flow = demand 

flow, we convert the three supply currencies to USD equivalent. Jake holds $9.6mil 

Yen, $1.68mil Rupiah, and $5.6mil Ringgit. This means that the optimal solution 

should result in Jake receiving 16.68mil (the sum of the three supply amounts). 

 

 

 

 

 

 

 

  



Solving with Excel 

Formulating this problem in excel, our objective function will be minimizing 

the transaction cost for all of the transactions through the network. The amount 

sent across each arc multiplied by its unit cost (percentage of amount transferred) 

will be summed up and minimized.  

For the starting network in part B, Jake should convert the equivalent of $2 

million from Yen into four currencies - US dollars, Canadian dollars, Euros, and 

British pounds, distributing the amount equally among them. He also needs to 

exchange $1.6 million worth of Yen into Mexican pesos. For Rupiah conversions, 

he must transfer $200,000 worth into each of three currencies: US dollars, 

Canadian dollars, and Mexican pesos, while converting $1 million worth into Euros 

and $80,000 worth into British pounds. Additionally, from Ringgit, he should 

exchange $1.1 million worth into US dollars, $2.5 million into Euros, and $1 million 

each into British pounds and Mexican pesos. Finally, he must convert all 

previously obtained Canadian dollars, Euros, British pounds, and Mexican pesos 

back into US dollars, specifically amounts equivalent to $2.2 million in Canadian 

dollars, $5.5 million in Euros, $3.08 million in British pounds, and $2.8 million in 

Mexican pesos. After covering the $83,380 transaction costs from his American 

bank account, Jake will have $16796170 available to invest in the United States. 

 



 
 

 

 

 

 



 Upon removing transaction limits, we see that the cost to convert all of the 

holdings decreases to $67,480. Jake should convert all 9.6million Yen to Pound to 

US, all 1.68million Rupiah to Canadian to US, and all 5.6million Ringgit to Euro to 

US. The elimination of capacity constraint yields this solution and transaction cost 

reduction for Jake.  

 

 
 

  

 



When increasing all transaction actions by 500% on Rupiah, the amounts 

sent remain the same as the last part because there are no capacity constraints, 

but we notice that the transaction cost increases to $92,680. We see this 500% 

increase in the trading cost highlighted in the grey box. 
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