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 Introduction 
 This data set comes from the Korea Sports Promotion Formation in South Korea. 

 The data collection aimed to classify the 13393 participants into 1 of 4 graded 
 categories ranging from A (the most fit) to D (the least fit or participation). Participants 
 ranged between the ages of 21 and 64 with a variety of physical characteristics with 
 tests being run to classify their fitness level. The publisher of this data set onto the data 
 forum Kaggle states that “[  t]he criteria for classifying  grades are not known precisely 
 because they are set by the institution” (kukuroo3). We hope to uncover if there was any 
 logical or algorithmic classifying process or if these data were subjectively placed into 
 groups by the test varying administrators. Our goal is to approximate the function the 
 institution might’ve used or be able to approximate characteristics the subjective 
 graders used as a classification boundary. 

 Below are the available features from the post-processed data set. From further 
 discovery it was uncovered that there were some omitted features that might have 
 proven more elucidating in a predictive models creation however, we will proceed with 
 the following features given in the processed data (Korea Sports Promotion Foundation 
 2022): 

 Description of Features 

 Age: age of the participant 
 Gender: binary feature, male or female 
 Height_cm: height of the participant in centimeters 
 Weight_kg: weight of the participant in kilograms 
 body.fat_%: The percentage of the participant’s weight that is fat. 
 Diastolic: The diastolic blood pressure of the participant mmHg 
 Systolic: The systolic blood pressure of the participant in mmHg 
 gripForce: The grip force of the participant in kilograms 
 Sit.and.bend.forward_cm: Distance achieved by the participant on the sit and bend 

 forward test 
 Sit.ups.counts: the amount of sit ups completed by the participant in two minutes 
 Broad.jump_cm: Broad jump length of the participant in centimeters. Broad jump is also 

 referred to as standing long jump 

 Outliers 
 There were a variety of outliers in this data set that needed to be removed 

 because they were clearly miss entries in some form or another. The following numbers 
 for each participant coordinate to the row number they happened to be in when cleaning 
 the data. Participants 2658 and 3356 had physically impossible values for sit-and-reach 
 with 213cm and 185cm respectively. That equates to several feet and a distance taller 
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 than themselves. Participant 736 had a body fat of 78.4% which is not entirely 
 impossible but given they were placed in class A and the spread of the rest of the 
 participants body fat, it was a clear outlier. Participant 10625 had a systolic and diastolic 
 blood pressure of 0 which was treated as an NA and removed. Participants 337 and 
 3525 had diastolic blood pressures of 8 and 6 respectively so they were removed as 
 well. Participant 8252 was removed as an outlier for height being around 125cm (4 
 feet). This is not absolutely an outlier but given the assumption of normality needed for 
 LDA and the large data set, we decided to remove their entry. Finally, participants 8563, 
 9487, and 9769 were removed because they had 0 recorded for grip force, so it was 
 treated as an NA entry and removed. Those are all the clear outliers that aided in less 
 variant data and more realistic predictions. 

 Initial Analysis 
 Ultimately we wish to find a formula or coefficients for an algorithm that best 

 approximate the potentially subjective classification from the data collection. Being able 
 to generalize a model to classify entirely new data would allow for more standard and 
 repeatable classifying results. Since these data were collected in a subjective manner 
 and we lack access to the unprocessed data set, working with what is given caused 
 some difficulties in the initial analysis. Exploring the data set revealed some decently 
 variant data and attempting to uncover the features responsible for this interference in 
 making class predictions turned out to be non-trivial. Exploring the feature set and 
 understanding the shortcomings of our data allowed for us to better predict class for an 
 individual given strategic modeling selections. 

 We began our analysis by fitting histograms of the various features to get a better 
 grasp on the data. Immediately there were some odd results, as a few of the histograms 
 seemed like they had two peaks. We thought that each peak might correspond with 
 male and female individuals, and after splitting the histograms by gender, that seemed 
 to be the case. Below are histograms of body fat percentage and grip force split by 
 gender. 

 Fig.1: Histogram of Grip Force split by gender  .  Fig. 2: Histogram of Body Fat % split by gender. 
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 It is clear that the mean of these data differ for the gender groups which will likely 
 need to be accounted for in the models. Logically, many of these physical attributes 
 physiologically differ between genders, which brought up the question of whether the 
 requirements to achieve a specific fitness class are the same between genders. 
 Looking at men and women specifically classified as A level fitness, the median grip 
 force among A class men is 46.8 kg and the median grip force among A class women is 
 27.9 kg. The median body fat percentage among A class men is 16.6% and the median 
 body fat percentage among A class women is 25.1%. This suggests that the 
 characteristics for an individual to receive a specific class is indeed different depending 
 on gender. 

 Continuing Analysis 
 With the intention of confirming our idea that gender would be an important 

 feature for predicting class, we decided to fit a Random Forest model. Throughout our 
 experience of the course, Random Forest models seem to have consistently done the 
 best in a classification setting similar to ours. Fitting one allows us to view the variable 
 importance plot which measures the most useful features for predicting class. 

 Fig. 3: Variable Importance Plot from Random Forest predicting class. 

 The plot on the left measures “how much accuracy the model loses by excluding 
 each variable”(Martinez-Taboada). The plot on the right measures the mean decrease in 
 Gini coefficient associated with each variable. For both plots, variables with larger 
 values have higher importance (Martinez-Taboada). In both plots, gender is one of the 
 least important variables for predicting class. This was puzzling given the histogram 
 results above clearly showing different spread of feature data between the genders. We 
 then proceeded to split up class and gender among each of the continuous features to 
 understand how this difference may be interacting with class prediction. 
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 Visualizing Gender Difference 
 To be able to visualize the difference between gender for a given feature, it was 

 important to also look at the variation between classes. Below are the three dimensional 
 plots that allowed further clarification on what was occuring. Below, the female group is 
 identified by orange points and the red lowess line where the male group is the blue 
 point with the corresponding blue lowess line. The points for men are shifted up slightly 
 to avoid overlap, but the lowess curve is not shifted up for the sake of comparison. 
 Classes A through D are represented as 4 through 1 on the graph. 

 Fig.4: Class by Grip Force showing gender difference. 

 Looking at this graph, it is clear that there is a significant difference between the 
 grip force among women and men in each class. The range of grip force among men 
 seems to be wider than for women, and the range for women in each class is generally 
 lower than the range for men in the same class. There is a slight trend of fitness level 
 increasing as grip force increases, but based on the lowess curves, the rate of increase 
 differs between genders. Thus, we would expect grip force to have a different effect on 
 class predictions depending on gender. 
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 Fig. 4: Class by Body Fat % showing gender difference. 

 The plot of body fat percentage also shows a clear difference between men and 
 women within each class. Generally, as body fat percentage increases, fitness level 
 decreases. Looking at the lowess curves, the slopes are fairly similar, but the range of 
 body fat percentage is higher for women compared to men of the same class. For 
 example, the majority of A class men have a body fat percentage lower than 25%, but 
 25.1% is the median among A class women. 

 In both graphs, despite the lowess curves indicating that there is a relationship 
 between the feature and class, there is significant overlap between the classes, which 
 puts into question how useful these variables on their own would be for predicting class. 
 We decided to also look at the most significant feature according to the variable 
 importance plot to see if this pattern was consistent. 
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 Fig. 5: Class by Sit-and-bend-forward showing gender difference. 

 While there is still overlap between classes in this graph, the points of distinction 
 between classes are much more pronounced. This is most significant for the distinction 
 between D and C class. There are no men with a sit and bend forward distance of less 
 than about 2 cm in C class, and it looks like nearly half of D class men have a distance 
 less than than 2 cm. Even in the most important feature, there is a noticeable difference 
 between genders, with the range of distance achieved by women being higher than that 
 of men in the same class. 

 8 



 Gender’s Significance 
 The results of the analysis so far seem contradictory. All of our graphical 

 evidence suggests that gender should be significant, as most of the features have 
 significantly different values depending on gender, but the variable importance plot 
 labels gender as insignificant. In an attempt to explain this, we wanted to test how well 
 gender could be modeled by the other features, and by doing so see how much of the 
 gender difference is explained by the other features. This was done by fitting a logistic 
 model that used all the features and not class, to predict gender. Below is the output: 

 Fig. 6: Logistic regression output predicting gender from all the features. 

 It is clear that most of these features are significant in predicting a person's 
 gender with most of the variables being highly significant. This is evidence to show that 
 gender is highly correlated with each of these features respectively. The output 
 indicates that there is multicollinearity and is giving similar information as a variance 
 inflation factor analysis. Since so much of the variation in gender is explained by the 
 remaining biological markers, this explains why gender has not been appearing as 
 significant in our initial analyses. Continuing on this vein, attempting to predict gender 
 on a test set when giving a trained model for predicting gender has a miss classification 
 rate of roughly 1.4%. 

 test 
 prediction  female male 

 female   1204   21 
 male      27 2093 

 Fig. 7: Confusion matrix for fitting test set on above model. 

 These findings further support that the features abilities to explain gender and 
 therefore gender, as a variable for modeling, could be potentially insignificant. To gauge 
 the significance of these variables in relation to their importance for predicting class, a 
 multinomial logistic regression was done and the standard errors for the coefficients 
 were analyzed. Since only the error terms were given, they were treated as a quasi 
 p-value with a larger error suggesting less significance in predictive ability for class. 
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 Fig 8: Multinomial Regression output predicting class and showing feature coefficient significance. 

 It is noticeable that every coefficient for each class has a lower standard error of 
 0.01 or less whereas gender is much more variable with values of 0.17, 0.20, and 0.25. 
 It is now clear that gender is not a significant predictor for class and that is caused by 
 the other variables' ability to account for it inherently. 

 We now wish to see how fitting models with and without splitting by gender do in 
 a classification setting. Given the findings above, we expect that, when accounting for 
 gender by separating them into two groups, the models will have similar 
 misclassification rates as models without this split. This split by gender can also aid in 
 the final models interpretability because the coefficients will be gender specific. 
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 Linear Discriminant Analysis Theory 
 Linear Discriminant Analysis (LDA) is an approximation to the Bayes Classifier 

 which aims to classify a discrete label by dividing the feature space with discriminant 
 functions. “The Bayes classifier produces the lowest possible test error rate, called the 
 Bayes error rate” (James et al. 38). Since we are approximating an algorithm with the 
 lowest error rate, the hope is to classify with a similarly low error rate. 

 There are some theoretical assumptions that are required about the data before 
 moving forward with the computation. Each feature is assumed to be normally 
 distributed and therefore will be scaled down with a normal distribution of mean zero 
 and variance of one. This is important because there is a shared covariance matrix 
 among all features so scaling these features allows for this matrix to be applied in the 
 formula. LDA takes a similar form to the Bayes Classifier as the formula below 
 indicates. 

 Fig. 9: Linear DIscriminant Analysis classification function. 

 x  T  : vector of feature values, transpose is taken for  multiplication 
 Σ  -1  : shared covariance matrix for the given data,  (inverted) 
 μ  k  : vector of means for each feature for class k 
 π  k  : defined as n  k  / n, the proportion of total subjects  in class k 
 Note that in practice, these values are estimations of the true population values and are approximating 
 the discriminant function for the population. 

 This formula returns a value for each of the k classes and the largest one is the 
 class to which the entry is assigned. It can be thought of as a type of softmax function. 
 In a higher dimensional space, a hyperplane is the discriminant space and best 
 separates the k-classes by maximizing between group variance. The boundary lines are 
 defined where there is a tie for the max value between classes and that is where the 
 term decision boundary is derived. 

 Additionally, there are discriminant coefficients returned for each corresponding 
 feature allowing for a form of dimensionality reduction. Each LD aims to describe the 
 variation between classes which can be found by the trace values associated with each. 
 Being able to work with a dimensionally reduced variable allows for plotting of the 
 discriminant functions separated by class. 

 11 



 Fitting LDA Models 
 Using the lda() R command in the MASS package, we were able to fit a LDA with 

 reported discriminant functions. We hope to further explain how our knowledge of the 
 theory aided our analysis of these models. Firstly, below are the confusion matrices for 
 our models. The misclassification rate for women is 38.17%,  for men it is 38.71%, and 
 the rate for combined is 38.13%. 

 Fig. 10: Confusion matrices of the three LDA models 

 The fact that the misclassification rates are so similar indicates that in the LDA 
 setting, gender does not aid in separating the groups as expected. Since so much of 
 this variance is already described in the features and the features are weighted in the 
 dimensionality reduction or discriminant functions, accounting for gender by splitting 
 models is not aiding the predictive capabilities of these LDA models. Given that our data 
 is rather noisy and some of the assumptions were not extremely accurate, the 
 misclassification rate was higher than we would’ve liked. Below are the trace values for 
 each LDA training model.Trace is the “proportion of between-class variance that is 
 explained by successive discriminant functions” (  LDA  and Model assessment in R  ). 

 Men  Women  Combined 

 Fig 11: Trace values for each LD function respective to each model. 
 See full output from LDA model including coefficients on page 23-24 

 Noticeably, the coefficients for the discriminant functions are different for the 
 male, female, and combined functions. This makes sense granted the conclusions 
 above about the physiological differences between the male and female groups. 

 The main discriminant function, LD1, is the discriminating hyperplane that is able 
 to separate the between group variance the best and accounts for roughly 98% of the 
 variance explained by the model. This means that the dimensional reduction done and 
 the weights reported from this function can be treated as its own form of classification 
 and is what would be used to predict on new data. Granted, some of the variation is not 
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 explained without the inclusion of the other discriminant functions but since 98% is 
 accounted for, LD1 on its own can be used to classify. 

 Another piece to note is the inverse covariance matrices for the three models 
 (see page 29 for inverse of those matrices). These are used in the LDA decision 
 boundary algorithm and it's helpful to get a sense of the values. Being able to report the 
 inverse of the covariance matrix allows for some values to be calculated by hand and 
 see the process which this algorithm follows. 

 Fig. 12: Pairs plot of LD1, LD2, and LD3 for the training LDA model combined group. 
 Class A = black, red = B, green = C, and blue = D 

 Here are the plots of the discriminant functions treated as variables and colored 
 by class where. It is rather clear that LD1 can distinguish between these classes the 
 best given the plots of LD1 vs. LD2 as well as LD1 vs. LD3. The LD2 vs. LD3 fails to 
 effectively separate classes.  This shows that neither LD2 nor LD3 are particularly 
 helpful for predicting class, which is consistent with the percentage trace explained from 
 the model summary. Having been able to explain 98% of the variance between classes 
 with LD1, this new single variable, which is a fitted discriminant function value for each 
 individual, allows for much more visualization and interpretability in higher dimensional 
 applications of LDA such as this. 
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 Fig. 13: 3-D plot of LD1 by LD2 split by predicted class. 
 Actual class is coded A = black, red = B, green = C, and blue = D. 

 It is clear that class D is the easiest to separate out prediction wise given the 
 discriminant functions. In the combined model, D class has a misclassification rate of 
 24.8%. A class seems to be the next best with a misclassification rate of 28.1%. 
 Classes B and C are much harder to predict with misclassification rates of 55.7% and 
 44.3% respectively. It is not clear where much of the variation and noise in our models 
 predictive ability is derived from. Note how much of classes B and C are miss classified. 
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 Polytomous Regression 
 We fit multinomial logistic regression models to predict class for each of the three 

 groupings. The hope was to find a better fit with an approach more similar to regression 
 than space separation and between group variance maximization of LDA. Being able to 
 report coefficients without dimensional reduction and have a classification algorithm for 
 each of the four distinct classes was a positive. LDA has the dimensionality reduction 
 equation but there still must be a decision made about class whereas polytomous 
 regression allows for more clear equations to classify. Below are the confusion matrices 
 for the male, female, and combined groups as well as the misclassification rate 
 reported. 

 Fig. 14: Confusion matrices for the three LDA models. 

 When splitting by gender, the misclassification rate does improve slightly but this 
 could just as well be a result of the randomization done in the cross validation 
 partitioning than it is gender explaining variance. Considering just how close these three 
 are, it is clear that gender is being accounted for by the other features in this model as 
 well. (See full polytomous output on page 38). 

 Decision Trees 
 Since our data and classification goal is to separate fitness class by the variety of 

 features, attempting to fit and then prune back a decision tree seems to be a sensical 
 next-step. Below we report the confusion matrices and misclassification rates, and the 
 actual decision tree graphs are on pages 30-31, in the appendix. 

 Fig. 15: Confusion matrices for the three decision tree models. 

 Again, the amount of variance explained by accounting for the gender term 
 allows for slightly better prediction power, but the rate is still rather high at over a third 
 incorrect when predicting. In the appendix, note that the tree splits have different 
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 coefficients which match the findings of varying sample means for the features split by 
 men and women. Regardless of gender, the similar variable splits crop up around the 
 same levels of the tree so this reinforces the finding that important variables are 
 important because of their ability to classify fitness class more so than their ability to 
 account for gender. Note that reporting these trees for future classification can be done 
 as separate functions or combined with gender being the first split. 

 We were able to account for slightly more variation given a decision tree, 
 however LDA, multinomial regression, and decision trees have done about the same 
 predictively with these data. We wish to use a different algorithm geared for 
 classification that could potentially make better predictions than the similar rates of the 
 previous models. 

 Random Forest 
 We finally decided to attempt random forest models which have proven to be 

 powerful in classification settings. Below, again, are the confusion matrices and 
 misclassification rates for the three groupings. 

 Fig. 16: Confusion Matrices for Random Forest models. 

 Random Forest models see a 10% lower misclassification  rate than that of the 
 previous models. This is an important finding because we have been able to explain 
 much more of the variation occurring in these data. Misclassifying one in four is much 
 better than one in three so in terms of modeling, this was a great success. However, 
 there is still a large portion of variance between these classes that has been left 
 unexplained and it is likely due to systemic issues in the data rather than finding better 
 methods. Being able to classify multi-factor problems becomes difficult but there are 
 other conclusions to be made. 
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 Conclusion 
 In all, we attribute our models inability to classify with high precision to a few 

 factors. Foremost is that we were not able to access the unprocessed data set that 
 contains additional features which could have likely been able to improve predictive 
 power. Additionally, the nature of the classification criteria from the institution is 
 unknown but it is our belief that it was done generally subjectively. Given, someone's 
 judgment on a very fit or very unhealthy individual is probably realistic but defining the 
 boundaries around classes B and C could contribute to their high misclassifications. 

 In terms of reporting our models, with the rate at which they misclassify, these 
 likely are not ready to be used for more data. Having access to more features would be 
 our biggest improvement if we were to conduct a new round of the data collection. 
 Given how many subjects we had, the lack of explanation deriving from the features 
 caused this predictive weakness of final models. 

 In all, given the data we had, we created models that were able to predict 
 decently well. There was very high correct classification for classes A and D so fine 
 tuning those ends was a positive. Uncovering and understanding the interaction gender 
 had in this data set was a large obstacle but our proof allowed us a greater 
 understanding of the data and modeling as a whole. Being able to parse apart data and 
 understand how to gear models to best work on them is an important skill to have in 
 machine learning. In all, we are proud of our analysis and work. 
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 R-Code Appendix 
 Appendix A: R-Code 

 library(randomForest)   # used for random forest models 
 library(caret)  # used for create data partition 
 library(glmnet)  # used for glmnet and cv.glmnet 
 library(MASS)  # lda() command from here 
 library(scatterplot3d)  # 3d plotting 
 library(rgl)  # used for 3d plotting 
 library(rpart)  # decisions trees 
 library(rpart.plot)  # plotting decision trees 
 library(nnet)  # multinom() command 

 # load data 
 heal <- read.csv("C:~/bodyPerformance.csv", header = T, stringsAsFactors = T) 

 # remove outliers 
 heal <- heal[-c(10625, 736, 2658, 3356, 337, 3525, 8252, 8563, 9487, 9769), ] 
 heal$gender <- ifelse(heal$gender == "M", 1, 0) 
 attach(heal) 

 # split into training and test 
 set.seed(5) 
 heal.ind <- createDataPartition(heal$class, p = 0.75, list = F) 
 htrain <- heal[heal.ind, ] 
 htest <- heal[-heal.ind, ] 

 # split by gender 
 # health data men 
 hmen <- heal[heal$gender == 1,] 
 # health data women 
 hwo <- heal[heal$gender == 0,] 

 # training for the men 
 htrainMen <- htrain[htrain$gender == 1,] 
 # remove gender column 
 htrainMen <- htrainMen[,-2] 
 # test set for the men 
 htestMen <- htest[htest$gender == 1,] 
 # remove gender column 
 htestMen <- htestMen[,-2] 

 # training for the women 
 htrainWo <- htrain[htrain$gender == 0,] 
 # remove gender column 
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 htrainWo <- htrainWo[,-2] 
 # test set for the women 
 htestWo <- htest[htest$gender == 0,] 
 # remove gender column 
 htestWo <- htestWo[,-2] 

 # histograms loop (actual histograms on page 4 of Appendix B) 

 vartitles <- c("Age", "Height (in cm)", "Weigth (in kg)", "Body Fat 
 Percentage", "Diastolic Blood Pressure (mmHg)", "Systolic Blood 
 Pressure (mmHg)", "Grip Force (kg)", "Sit and Bend Forward (cm)", 
 "Sit-Ups (max in 2min)", "Broad Jump (in cm)") 

 par(ask = T) 
 for(i in 1:10){ 
 Xmin <- min(min(hmen[, i]), min(hwo[, i])) 
 Xmax <- max(max(hmen[, i]), max(hwo[, i])) 
 hist(hmen[, i], freq = F, main = paste("Hist of Mens", vartitles[i]), 

 xlab = vartitles[i], xlim = c(Xmin, Xmax), cex.main = 0.9) 
 hist(hwo[, i], freq = F, main = paste("Hist of Womens", vartitles[i]), 

 xlab = vartitles[i], xlim = c(Xmin, Xmax), cex.main = 0.9) 
 } 

 # variable importance plot with matching RF model 
 set.seed(1) 
 rand <- randomForest(as.factor(class) ~ ., data = htrain, mtry = 
 5, ntree = 500,importance = T) 

 pred <- predict(rand, htest, response = "class") 
 tableRand <- table(pred, htest$class) 
 tableRand 
 RANDrate <- (sum(tableRand[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 
 14, 15)]))/length(htest$class) 
 RANDrate 
 varImpPlot(rand,main = "Random Forest Variable Importance") 

 # class by predictor plots split by gender (plots on page 5) 

 varnames <- hmen %>% names() 

 classNumMen = 5-as.numeric(hmen$class) 
 classNumWo = 5-as.numeric(hwo$class) 
 classNum = 5-as.numeric(class) 

 par(ask = T) 
 for(i in 1:10){ 
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 Xmin <- min(min(hmen[, i]), min(hwo[, i])) 
 Xmax <- max(max(hmen[, i]), max(hwo[, i])) 
 plot(heal[, varnames[i]], classNum, cex.main = 0.9, 

 main = paste("Class by ", vartitles[i]), 
 xlab = vartitles[i], ylab="Class (A = 4, D = 1)", 
 type = "n",ylim = c(.8,4.5), xlim = c(Xmin, Xmax)) 

 points(hmen[, i], defaultjitter <- 
 .25+classNumMen+runif(length(classNumMen),-.1,.1),col="light blue",pch = 
 20,cex =.5) 
 points(hwo[, i],defaultjitter <- 

 classNumWo+runif(length(classNumWo),-.1,.1),col="orange",pch=20,cex = .5) 
 lines(lowess(hmen[, i],classNumMen),lwd =3, col = "blue") 
 lines(lowess(hwo[,i], classNumWo),lwd =3, col = "red") 

 } 

 par(ask=F) 

 # gender ~ all the features (not class) 

 healnoclass <- heal[, -12] 
 set.seed(1) 
 summary(genderLogit <- glm(gender ~ ., family = "binomial", 

 data = healnoclass)) 

 # test/train table for that model 

 heal.ind <- createDataPartition(healnoclass$gender, p = 0.75, list = F) 
 gendertrain <- healnoclass[heal.ind, ] 
 gendertest <- healnoclass[-heal.ind, ] 
 summary(modell <- glm(gender ~ ., family = "binomial", data = gendertrain)) 
 predict_gender <- predict(modell, newdata = gendertest, type = "response") 

 prediction <- ifelse((predict_gender > 0.5) == T, 1, 0) 
 validation <- gendertest[, 2] 
 gendertable <- table(prediction, validation) 
 gendertable 

 # multinomial for that model 
 multinomtrain <- multinom(class ~ ., data = as.data.frame(htrain)) 
 summary(multinomtrain) 

 multipredict <- predict(multinomtrain, newdata = as.data.frame(htest), type = 
 "class") 
 tablemulti <- table(multipredict, htest[, 12]) 
 multirate <- (sum(tablemulti[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/dim(ytest)[1] 
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 ##########  LDA ########## 
 ### Scale data for lda 
 scaletrain <- scale(htrain[, -c(2, 12)]) 
 htrainclass <- htrain[, 12] 
 htrain <- cbind(scaletrain[, 1], htrain[, 2], scaletrain[, 2:10]) 
 htrain <- as.data.frame(htrain) 

 htrain <- cbind(htrain, htrainclass) 
 colnames(htrain) <- c("age", "gender", "height_cm", "weight_kg", "body.fat_.", 
 "diastolic", 

 "systolic", "gripForce", "sit.and.bend.forward_cm", 
 "sit.ups.counts", 

 "broad.jump_cm", "class") 

 scaletest <- scale(htest[, -c(2, 12)]) 
 htestclass <- htest[, 12] 
 htest <- cbind(scaletest[, 1], htest[, 2], scaletest[, 2:10]) 
 htest <- as.data.frame(htest) 
 htest <- cbind(htest, htestclass) 
 colnames(htest) <- c("age", "gender", "height_cm", "weight_kg", "body.fat_.", 
 "diastolic", 

 "systolic", "gripForce", "sit.and.bend.forward_cm", 
 "sit.ups.counts", 

 "broad.jump_cm", "class") 

 htrainMen <- htrain[htrain$gender == 1,] 
 htestMen <- htest[htest$gender == 1,] 
 htrainMen <- htrainMen[,-2] 
 htestMen <- htestMen[,-2] 

 htrainWo <- htrain[htrain$gender == 0,] 
 htestWo <- htest[htest$gender == 0,] 
 htrainWo <- htrainWo[,-2] 
 htestWo <- htestWo[,-2] 

 # Code for the models 
 #men 
 set.seed(1) 
 lda_modelMen <- lda(class ~ ., data = htrainMen) 
 lda_predMen <- predict(lda_modelMen, newdata = htestMen) 

 #women 
 set.seed(1) 
 lda_modelWo <- lda(class ~ ., data = htrainWo) 
 lda_predWo <- predict(lda_modelWo, newdata = htestWo) 

 22 



 #combined 
 set.seed(1) 
 lda_model <- lda(class ~ ., data = htrain) 
 lda_pred <- predict(lda_model, newdata = htest) 

 # Code for confusion matrices 
 ldatableMen <- table(lda_predMen$class, htestMen$class) 
 ldarateMen <- (sum(ldatableMen[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htestMen$class) 
 ldarateMen 

 ldatableWo <- table(lda_predWo$class, htestWo$class) 
 ldarateWo <- (sum(ldatableWo[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htestWo$class) 
 ldarateWo 

 ldatable <- table(lda_pred$class, htest$class) 
 ldarate <- (sum(ldatable[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htest$class) 
 ldarate 

 # the model outputs with trace and coefficients 
 ## Men model 

 lda_modelMen 

 ## women model 
 lda_modelWo 

 23 



 ## combined model: 
 lda_model 

 # lda pairs graph 

 pairs(lda_pred$x, pch = 20, col = as.numeric(htest$class), 
 main = "Pairs Plot of LD1, LD2, and LD3\nFor Combined LDA Model", 

 cex.main = 0.95) 

 # 3d plot 

 LD1 <- preds[, 1] 
 LD2 <- preds[, 2] 
 predictedClass <- (5 - (lda_pred$class %>% as.numeric())) %>% as.factor() 
 plot3d(LD1, LD2, predictedClass, col = as.numeric(htest$class), size = 5,) 

 ## Reload unscaled data 
 htrain <- heal[heal.ind, ] 
 htest <- heal[-heal.ind, ] 

 hmen <- heal[heal$gender == 1,] 
 hwo <- heal[heal$gender == 0,] 

 htrainMen <- htrain[htrain$gender == 1,] 
 htestMen <- htest[htest$gender == 1,] 
 htrainMen <- htrainMen[,-2] 
 htestMen <- htestMen[,-2] 

 htrainWo <- htrain[htrain$gender == 0,] 
 htestWo <- htest[htest$gender == 0,] 
 htrainWo <- htrainWo[,-2] 
 htestWo <- htestWo[,-2] 
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 ########## polytomous regression ########## 

 # Code for the three models 
 #men 
 set.seed(1) 
 polyLMtrainMen <- glmnet(x = as.matrix(htrainMen[, 1:10]),y = htrainMen[, 11], 

 family = "multinomial", 
 lambda = 0, 
 type.multinomial = "ungrouped") 

 #women 
 set.seed(1) 
 polyLMtrainWo <- glmnet(x = as.matrix(htrainWo[, 1:10]), y = htrainWo[, 11], 

 family = "multinomial", 
 lambda = 0, 
 type.multinomial = "ungrouped") 

 #combined 
 set.seed(1) 
 polyLMtrain <- glmnet(x = as.matrix(htrain[,1:11]), y = htrain[,12] , 

 family = "multinomial", 
 lambda = 0, 
 type.multinomial = "ungrouped") 

 # Code for confusion matrices 
 # predict Men 
 polyLMpredictMen <- predict(polyLMtrainMen, newx = as.matrix(htestMen[, 
 1:10]), type = "class") 
 #table 
 tablePOLYMen <- table(polyLMpredictMen, as.matrix(htestMen[, 11])) 
 tablePOLYMen 
 polyLMrateMen <- (sum(tablePOLYMen[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htestMen$class) 
 polyLMrateMen 

 # predict women 
 polyLMpredictWo <- predict(polyLMtrainWo, newx = as.matrix(htestWo[, 1:10]), 
 type = "class") 
 #table 
 tablePOLYWo <- table(polyLMpredictWo, htestWo[, 11]) 
 tablePOLYWo 
 polyLMrateWo <- (sum(tablePOLYWo[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htestWo$class) 
 polyLMrateWo 

 # predict combined 
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 polyLMpredict <- predict(polyLMtrain, newx = as.matrix(htest[1:11]), type = 
 "class") 
 #table 
 tablePOLY <- table(polyLMpredict, htest[,12]) 
 tablePOLY 
 polyLMrate <- (sum(tablePOLY[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htest$class) 
 polyLMrate 

 # Polytomous model coefficients (coefficients on page 10 of 
 Appendix B) 

 coef(polyLMtrainMen) 
 coef(polyLMtrainWo) 
 coef(polyLMtrain) 

 ########## decision tree ########## 

 # Code for the tree models 
 # Men Tree: 
 set.seed(1) 
 men.tree <- rpart(class~.,data = htrainMen, 

 method='class', 
 control=rpart.control(minsplit=300,cp=.001,xval=10)) 

 best <- men.tree$cptable[which.min(men.tree$cptable[,"xerror"]),"CP"] 

 # store pruned tree 
 men.tree.pruned <- prune(men.tree, cp=best) 

 # Women tree: 
 set.seed(1) 
 women.tree <- rpart(class~.,data = htrainWo, 

 method='class', 
 control=rpart.control(minsplit=300,cp=.001,xval=10)) 

 best <- women.tree$cptable[which.min(women.tree$cptable[,"xerror"]),"CP"] 

 # store pruned tree 
 women.tree.pruned <- prune(women.tree, cp=best) 

 #combined tree 
 set.seed(1) 
 full.tree <- rpart(class~.,data = htrain, 

 method='class', 
 control=rpart.control(minsplit=300,cp=.001,xval=10)) 

 best <- full.tree$cptable[which.min(full.tree$cptable[,"xerror"]),"CP"] 
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 # store pruned tree 
 full.tree.pruned <- prune(full.tree, cp=best) 

 # code for the tree confusion matrices 
 prunePredictMen <- predict(men.tree.pruned,newdata = htestMen,type="class") 
 treeTable <- table(prunePredictMen,htestMen$class) 
 treeMCRateMen <- (sum(treeTable[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htestMen$class) 
 treeMCRateMen 

 prunePredictWo <- predict(women.tree.pruned,newdata = htestWo,type="class") 
 treeTable <- table(prunePredictWo,htestWo$class) 
 treeMCRateWo <- (sum(treeTable[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htestWo$class) 
 treeMCRateWo 

 prunePredict <- predict(full.tree.pruned,newdata = htest,type="class") 
 treeTable <- table(prunePredict,htest$class) 
 treeMCRate <- (sum(treeTable[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htest$class) 
 treeMCRate 

 # code for tree plots (plots on page 2 of Appendix B) 
 prp(men.tree.pruned, 

 faclen=0, 
 extra=1, 
 roundint=F, 
 digits=5) 

 prp(women.tree.pruned, 
 faclen=0, 
 extra=1, 
 roundint=F, 
 digits=5) 

 prp(full.tree.pruned, 
 faclen=0, 
 extra=1, 
 roundint=F, 
 digits=5) 

 ##########  Random Forest ########## 

 # Code for RandForest Models 
 set.seed(1) 
 randMen <- randomForest(as.factor(class) ~ ., data = htrainMen, mtry = 5, 
 ntree = 500,importance = T) 
 set.seed(1) 
 randWo <- randomForest(as.factor(class) ~ ., data = htrainWo, mtry = 5, ntree 
 = 500,importance = T) 
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 set.seed(1) 
 rand <- randomForest(as.factor(class) ~ ., data = htrain, mtry = 5, ntree = 
 500,importance = T) 

 # Code for RandForest confusion matrices 
 predMen <- predict(rand, htestMen, response = "class") 
 tableRandMen <- table(pred, htestMen$class) 
 tableRandMen 
 RANDrateMen <- (sum(tableRandMen[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htestMen$class) 
 RANDrateMen 

 predWo <- predict(randWo, htestWo, response = "class") 
 tableRandWo <- table(predWo, htestWo$class) 
 tableRandWo 
 RANDrateWo <- (sum(tableRandWo[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htestWo$class) 
 RANDrateWo 

 pred <- predict(rand, htest, response = "class") 
 tableRand <- table(pred, htest$class) 
 tableRand 
 RANDrate <- (sum(tableRand[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 
 15)]))/length(htest$class) 
 RANDrate 
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 Plotting Appendix 

 Appendix B: R-Code 
 Inverse Covariance matrices 

 Male: 

 Female: 

 Combined: 
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 Decision Trees: 
 Men: 

 Women: 
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 Combined: 

 Histograms: 
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 Class by Predictor plots split by gender: 

 33 



 34 



 35 



 36 



 37 



 Polytomous model Coefficients 

 Men  Women  Combined 
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