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Introduction

This data set comes from the Korea Sports Promotion Formation in South Korea.
The data collection aimed to classify the 13393 participants into 1 of 4 graded
categories ranging from A (the most fit) to D (the least fit or participation). Participants
ranged between the ages of 21 and 64 with a variety of physical characteristics with
tests being run to classify their fitness level. The publisher of this data set onto the data
forum Kaggle states that “[t]he criteria for classifying grades are not known precisely
because they are set by the institution” (kukuroo3). We hope to uncover if there was any
logical or algorithmic classifying process or if these data were subjectively placed into
groups by the test varying administrators. Our goal is to approximate the function the
institution might've used or be able to approximate characteristics the subjective
graders used as a classification boundary.

Below are the available features from the post-processed data set. From further
discovery it was uncovered that there were some omitted features that might have
proven more elucidating in a predictive models creation however, we will proceed with
the following features given in the processed data (Korea Sports Promotion Foundation
2022):

Description of Features

Age: age of the participant

Gender: binary feature, male or female

Height_cm: height of the participant in centimeters

Weight_kg: weight of the participant in kilograms

body.fat_%: The percentage of the participant’s weight that is fat.

Diastolic: The diastolic blood pressure of the participant mmHg

Systolic: The systolic blood pressure of the participant in mmHg

gripForce: The grip force of the participant in kilograms

Sit.and.bend.forward_cm: Distance achieved by the participant on the sit and bend

forward test

Sit.ups.counts: the amount of sit ups completed by the participant in two minutes

Broad.jump_cm: Broad jump length of the participant in centimeters. Broad jump is also
referred to as standing long jump

Outliers

There were a variety of outliers in this data set that needed to be removed
because they were clearly miss entries in some form or another. The following numbers
for each participant coordinate to the row number they happened to be in when cleaning
the data. Participants 2658 and 3356 had physically impossible values for sit-and-reach
with 213cm and 185cm respectively. That equates to several feet and a distance taller
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than themselves. Participant 736 had a body fat of 78.4% which is not entirely
impossible but given they were placed in class A and the spread of the rest of the
participants body fat, it was a clear outlier. Participant 10625 had a systolic and diastolic
blood pressure of 0 which was treated as an NA and removed. Participants 337 and
3525 had diastolic blood pressures of 8 and 6 respectively so they were removed as
well. Participant 8252 was removed as an outlier for height being around 125cm (4
feet). This is not absolutely an outlier but given the assumption of normality needed for
LDA and the large data set, we decided to remove their entry. Finally, participants 8563,
9487, and 9769 were removed because they had 0 recorded for grip force, so it was
treated as an NA entry and removed. Those are all the clear outliers that aided in less

variant data and more realistic predictions.

Initial Analysis

Ultimately we wish to find a formula or coefficients for an algorithm that best
approximate the potentially subjective classification from the data collection. Being able
to generalize a model to classify entirely new data would allow for more standard and
repeatable classifying results. Since these data were collected in a subjective manner
and we lack access to the unprocessed data set, working with what is given caused
some difficulties in the initial analysis. Exploring the data set revealed some decently
variant data and attempting to uncover the features responsible for this interference in
making class predictions turned out to be non-trivial. Exploring the feature set and
understanding the shortcomings of our data allowed for us to better predict class for an

individual given strategic modeling selections.

We began our analysis by fitting histograms of the various features to get a better
grasp on the data. Immediately there were some odd results, as a few of the histograms
seemed like they had two peaks. We thought that each peak might correspond with
male and female individuals, and after splitting the histograms by gender, that seemed
to be the case. Below are histograms of body fat percentage and grip force split by

gender.
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Fig.1: Histogram of Grip Force split by gender.

Density

Hist of Mens Grip Force (kg) Hist of Womens Grip Force (Kg)

0.04

Density

0.02

0.00 0.02 0.04 0.068

0 20 40 60 0 20 40 60

0.00

Grip Force (kg) Grip Force (kg)

Fig. 2: Histogram of Body Fat % split by gender.



It is clear that the mean of these data differ for the gender groups which will likely
need to be accounted for in the models. Logically, many of these physical attributes
physiologically differ between genders, which brought up the question of whether the
requirements to achieve a specific fitness class are the same between genders.
Looking at men and women specifically classified as A level fitness, the median grip
force among A class men is 46.8 kg and the median grip force among A class women is
27.9 kg. The median body fat percentage among A class men is 16.6% and the median
body fat percentage among A class women is 25.1%. This suggests that the
characteristics for an individual to receive a specific class is indeed different depending
on gender.

Continuing Analysis

With the intention of confirming our idea that gender would be an important
feature for predicting class, we decided to fit a Random Forest model. Throughout our
experience of the course, Random Forest models seem to have consistently done the
best in a classification setting similar to ours. Fitting one allows us to view the variable
importance plot which measures the most useful features for predicting class.

Random Forest Variable Importance Plot
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Fig. 3: Variable Importance Plot from Random Forest predicting class.

The plot on the left measures “how much accuracy the model loses by excluding
each variable”(Martinez-Taboada). The plot on the right measures the mean decrease in
Gini coefficient associated with each variable. For both plots, variables with larger
values have higher importance (Martinez-Taboada). In both plots, gender is one of the
least important variables for predicting class. This was puzzling given the histogram
results above clearly showing different spread of feature data between the genders. We
then proceeded to split up class and gender among each of the continuous features to
understand how this difference may be interacting with class prediction.



Visualizing Gender Difference

To be able to visualize the difference between gender for a given feature, it was
important to also look at the variation between classes. Below are the three dimensional
plots that allowed further clarification on what was occuring. Below, the female group is
identified by orange points and the red lowess line where the male group is the blue
point with the corresponding blue lowess line. The points for men are shifted up slightly
to avoid overlap, but the lowess curve is not shifted up for the sake of comparison.
Classes A through D are represented as 4 through 1 on the graph.
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Fig.4: Class by Grip Force showing gender difference.

Looking at this graph, it is clear that there is a significant difference between the
grip force among women and men in each class. The range of grip force among men
seems to be wider than for women, and the range for women in each class is generally
lower than the range for men in the same class. There is a slight trend of fitness level
increasing as grip force increases, but based on the lowess curves, the rate of increase
differs between genders. Thus, we would expect grip force to have a different effect on
class predictions depending on gender.



Class by Body Fat Percentage
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Fig. 4: Class by Body Fat % showing gender difference.

The plot of body fat percentage also shows a clear difference between men and
women within each class. Generally, as body fat percentage increases, fitness level
decreases. Looking at the lowess curves, the slopes are fairly similar, but the range of
body fat percentage is higher for women compared to men of the same class. For
example, the majority of A class men have a body fat percentage lower than 25%, but
25.1% is the median among A class women.

In both graphs, despite the lowess curves indicating that there is a relationship
between the feature and class, there is significant overlap between the classes, which
puts into question how useful these variables on their own would be for predicting class.
We decided to also look at the most significant feature according to the variable
importance plot to see if this pattern was consistent.
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Fig. 5: Class by Sit-and-bend-forward showing gender difference.

While there is still overlap between classes in this graph, the points of distinction
between classes are much more pronounced. This is most significant for the distinction
between D and C class. There are no men with a sit and bend forward distance of less
than about 2 cm in C class, and it looks like nearly half of D class men have a distance
less than than 2 cm. Even in the most important feature, there is a noticeable difference
between genders, with the range of distance achieved by women being higher than that
of men in the same class.



Gender’s Significance
The results of the analysis so far seem contradictory. All of our graphical

evidence suggests that gender should be significant, as most of the features have
significantly different values depending on gender, but the variable importance plot
labels gender as insignificant. In an attempt to explain this, we wanted to test how well
gender could be modeled by the other features, and by doing so see how much of the
gender difference is explained by the other features. This was done by fitting a logistic
model that used all the features and not class, to predict gender. Below is the output:

Coefficients:

Estimate Std. Error z value Pr{>|z|)
(Intercept) -40.684977 3.231729 -12.589 < 2e-16 #%%
age 0.109392 0.007724 14.162 < 2e-16 #***
height_cm 0.084668 0.018615 4.548 5.4e-06 #=*%
weight_kg 0.176684  0.013893 12.717 < 2e-16 #*%%
body.fat_. -0.281295 0.019200 -14.651 < 2e-16 #***
diastolic 0.015333 0.009679 1.584 0.1132
systolic 0.024103 0.007384 3.264  0.0011 =**
gripForce 0.252497 0.015649 16.135 < 2e-16 =#+*%
sit.and.bend.forward_cm -0.269926 0.012487 -21.616 < 2e-16 #*=*
sit.ups.counts 0.020413 0.008986 2.272 0.0231 *
broad. jump_cm 0.051008 0.003778 13.500 < 2e-16 ***

Fig. 6: Logistic regression output predicting gender from all the features.

It is clear that most of these features are significant in predicting a person's
gender with most of the variables being highly significant. This is evidence to show that
gender is highly correlated with each of these features respectively. The output
indicates that there is multicollinearity and is giving similar information as a variance
inflation factor analysis. Since so much of the variation in gender is explained by the
remaining biological markers, this explains why gender has not been appearing as
significant in our initial analyses. Continuing on this vein, attempting to predict gender
on a test set when giving a trained model for predicting gender has a miss classification

rate of roughly 1.4%.
test
prediction female male
female 1204 21
male 27 2093
Fig. 7: Confusion matrix for fitting test set on above model.

These findings further support that the features abilities to explain gender and
therefore gender, as a variable for modeling, could be potentially insignificant. To gauge
the significance of these variables in relation to their importance for predicting class, a
multinomial logistic regression was done and the standard errors for the coefficients
were analyzed. Since only the error terms were given, they were treated as a quasi
p-value with a larger error suggesting less significance in predictive ability for class.



Coefficients:

(Intercept) age  gender height_cm weight_kg body.fat_. diastolic systolic  gripForce sit.and.bend.forward_cm sit.ups.counts broad.jump_cm
B 10.03826 -0.07286265 2.425658 0.002739399 0.07116741 0.009401489 0.006394757 -0.001997449 -0.08617077 -0.1683824 -0.09406434 -0.01807147
[« 15.78550 -0.13729829 3.944939 0.019267419 0.11150208 0.001712806 0.011887429 -0.005883489 -0.14792854 -0.2805061 -0.17996165 -0.02850434
D 23.22387 -0.20185930 5.214257 -0.023081042 0.20802223 0.073735760 0.023525520 -0.009125496 -0.20254382 -0.4373279 -0.28125206 -0.03046535
std. Errors:

(Intercept) age gender height_cm weight_kg body.fat_. diastolic systolic gripForce sit.and.bend.forward_cm sit.ups.counts broad.jump_cm
B 0.005176786 0.003801236 0.1721046 0.003621827 0.006508650 0.007781490 0.004257378 0.003249914 0.007335018 0.007694779 0.004929947 0.002024016
C 0.006107315 0.004498345 0.2006710 0.004146764 0.007411061 0.009040944 0.004963601 0.003762985 0.008519954 0.008862405 0.005891677 0.002268125
D 0.005859635 0.005499418 0.2457936 0.004819203 0.008843293 0.011445245 0.006271978 0.004686221 0.010435560 0.010469859 0.007329118 0.002688229

Fig 8: Multinomial Regression output predicting class and showing feature coefficient significance.

It is noticeable that every coefficient for each class has a lower standard error of
0.01 or less whereas gender is much more variable with values of 0.17, 0.20, and 0.25.
It is now clear that gender is not a significant predictor for class and that is caused by
the other variables' ability to account for it inherently.

We now wish to see how fitting models with and without splitting by gender do in
a classification setting. Given the findings above, we expect that, when accounting for
gender by separating them into two groups, the models will have similar
misclassification rates as models without this split. This split by gender can also aid in
the final models interpretability because the coefficients will be gender specific.
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Linear Discriminant Analysis Theory

Linear Discriminant Analysis (LDA) is an approximation to the Bayes Classifier
which aims to classify a discrete label by dividing the feature space with discriminant
functions. “The Bayes classifier produces the lowest possible test error rate, called the
Bayes error rate” (James et al. 38). Since we are approximating an algorithm with the
lowest error rate, the hope is to classify with a similarly low error rate.

There are some theoretical assumptions that are required about the data before
moving forward with the computation. Each feature is assumed to be normally
distributed and therefore will be scaled down with a normal distribution of mean zero
and variance of one. This is important because there is a shared covariance matrix
among all features so scaling these features allows for this matrix to be applied in the
formula. LDA takes a similar form to the Bayes Classifier as the formula below
indicates.

_ 1 _
Op(x) = " By, — §M52 g + log

Fig. 9: Linear Discriminant Analysis classification function.

x": vector of feature values, transpose is taken for multiplication

2" shared covariance matrix for the given data, (inverted)

Mi: vector of means for each feature for class k

. defined as n, / n, the proportion of total subjects in class k

Note that in practice, these values are estimations of the true population values and are approximating
the discriminant function for the population.

This formula returns a value for each of the k classes and the largest one is the
class to which the entry is assigned. It can be thought of as a type of softmax function.
In a higher dimensional space, a hyperplane is the discriminant space and best
separates the k-classes by maximizing between group variance. The boundary lines are
defined where there is a tie for the max value between classes and that is where the
term decision boundary is derived.

Additionally, there are discriminant coefficients returned for each corresponding
feature allowing for a form of dimensionality reduction. Each LD aims to describe the
variation between classes which can be found by the trace values associated with each.
Being able to work with a dimensionally reduced variable allows for plotting of the
discriminant functions separated by class.
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Fitting LDA Models

Using the Ida() R command in the MASS package, we were able to fit a LDA with
reported discriminant functions. We hope to further explain how our knowledge of the
theory aided our analysis of these models. Firstly, below are the confusion matrices for
our models. The misclassification rate for women is 38.17%, for menitis 38.71%, and
the rate for combined is 38.13%.

Women Men

Test Set Test Set Combined test
Prediction A B € D Prediction A B C D predicted A B c D
A 296 108 36 4 A 305 112 35 4 A 601 219 71 10
B 67 103 64 14 B 149 255 127 29 B 218 373 192 43
C 7 68 134 45 C 12 166 333 110 C 17 217 466 154
D 44 217 D 0 17 &4 413 D 0 26 108 629

Fig. 10: Confusion matrices of the three LDA models

The fact that the misclassification rates are so similar indicates that in the LDA
setting, gender does not aid in separating the groups as expected. Since so much of
this variance is already described in the features and the features are weighted in the
dimensionality reduction or discriminant functions, accounting for gender by splitting
models is not aiding the predictive capabilities of these LDA models. Given that our data
is rather noisy and some of the assumptions were not extremely accurate, the
misclassification rate was higher than we would’ve liked. Below are the trace values for
each LDA training model.Trace is the “proportion of between-class variance that is
explained by successive discriminant functions” (LDA and Model assessment in R).

Men Women Combined
Proportion of trace: Proportion of trace: Proportion of trace:
LD1 LD2 LD3 LD1 LD2 LD3 LD1 LD2 LD3

0.9772 0.0212 0.0016 0.9811 0.0181 0.0008 0.9782 0.0203 0.0015

Fig 11: Trace values for each LD function respective to each model.
See full output from LDA model including coefficients on page 23-24

Noticeably, the coefficients for the discriminant functions are different for the
male, female, and combined functions. This makes sense granted the conclusions
above about the physiological differences between the male and female groups.

The main discriminant function, LD1, is the discriminating hyperplane that is able
to separate the between group variance the best and accounts for roughly 98% of the
variance explained by the model. This means that the dimensional reduction done and
the weights reported from this function can be treated as its own form of classification
and is what would be used to predict on new data. Granted, some of the variation is not

12



explained without the inclusion of the other discriminant functions but since 98% is
accounted for, LD1 on its own can be used to classify.

Another piece to note is the inverse covariance matrices for the three models
(see page 29 for inverse of those matrices). These are used in the LDA decision
boundary algorithm and it's helpful to get a sense of the values. Being able to report the
inverse of the covariance matrix allows for some values to be calculated by hand and
see the process which this algorithm follows.

Pairs Plot of LD1, LD2, and LD3
For Combined LDA Model

0
I I |

Fig. 12: Pairs plot of LD1, LD2, and LD3 for the training LDA model combined group.
Class A = black, red = B, green = C, and blue =D

Here are the plots of the discriminant functions treated as variables and colored
by class where. It is rather clear that LD1 can distinguish between these classes the
best given the plots of LD1 vs. LD2 as well as LD1 vs. LD3. The LD2 vs. LD3 fails to
effectively separate classes. This shows that neither LD2 nor LD3 are particularly
helpful for predicting class, which is consistent with the percentage trace explained from
the model summary. Having been able to explain 98% of the variance between classes
with LD1, this new single variable, which is a fitted discriminant function value for each
individual, allows for much more visualization and interpretability in higher dimensional
applications of LDA such as this.

13
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Fig. 13: 3-D plot of LD1 by LD2 split by predicted class.
Actual class is coded A = black, red = B, green = C, and blue = D.

It is clear that class D is the easiest to separate out prediction wise given the
discriminant functions. In the combined model, D class has a misclassification rate of
24.8%. A class seems to be the next best with a misclassification rate of 28.1%.
Classes B and C are much harder to predict with misclassification rates of 55.7% and
44 .3% respectively. It is not clear where much of the variation and noise in our models
predictive ability is derived from. Note how much of classes B and C are miss classified.
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Polytomous Regression

We fit multinomial logistic regression models to predict class for each of the three
groupings. The hope was to find a better fit with an approach more similar to regression
than space separation and between group variance maximization of LDA. Being able to
report coefficients without dimensional reduction and have a classification algorithm for
each of the four distinct classes was a positive. LDA has the dimensionality reduction
equation but there still must be a decision made about class whereas polytomous
regression allows for more clear equations to classify. Below are the confusion matrices
for the male, female, and combined groups as well as the misclassification rate
reported.

Men: test Combined: test
edicted A 8 Cc D Female: rest Predicted A B C D

predicte S8k X Predicted A B C D suLete - o
A 323 117 43 6 A 290 99 35 4 A 594 220 70 14
B 132 257 107 26 5 753 110 58 13 B 228 370 185 36
C 10 153 313 85 ¢ 7 9 129 37 C 14 211 438 123
D 1 23 96 439 D 0 7 56 226 D 0 34 144 663

Misclassification: 37.49% Misclassification: 37.76% Misclassification rate: 38.25%

Fig. 14: Confusion matrices for the three LDA models.

When splitting by gender, the misclassification rate does improve slightly but this
could just as well be a result of the randomization done in the cross validation
partitioning than it is gender explaining variance. Considering just how close these three
are, it is clear that gender is being accounted for by the other features in this model as
well. (See full polytomous output on page 38).

Decision Trees
Since our data and classification goal is to separate fitness class by the variety of
features, attempting to fit and then prune back a decision tree seems to be a sensical
next-step. Below we report the confusion matrices and misclassification rates, and the
actual decision tree graphs are on pages 30-31, in the appendix.

Men: test

. Women: test Combined: test
predicted A B c D Predicted A B c D Predicted A B c D
A 374 164 66 15 A 348 119 58 11 A 712 328 168 35
B 53 220 82 22 B 22 116 62 45 B 119 347 165 63
Cc 29 108 350 113 C 0 36 124 43 C 4 108 420 172
D 10 58 6l 406 D 0 14 34 181 D 1 52 84 566
Misclassification Rate: 36.65% Misclassification Rate: 36.60% Misclassification Rate: 38.85%

Fig. 15: Confusion matrices for the three decision tree models.

Again, the amount of variance explained by accounting for the gender term
allows for slightly better prediction power, but the rate is still rather high at over a third
incorrect when predicting. In the appendix, note that the tree splits have different

15



coefficients which match the findings of varying sample means for the features split by
men and women. Regardless of gender, the similar variable splits crop up around the
same levels of the tree so this reinforces the finding that important variables are
important because of their ability to classify fitness class more so than their ability to
account for gender. Note that reporting these trees for future classification can be done
as separate functions or combined with gender being the first split.

We were able to account for slightly more variation given a decision tree,
however LDA, multinomial regression, and decision trees have done about the same
predictively with these data. We wish to use a different algorithm geared for
classification that could potentially make better predictions than the similar rates of the
previous models.

Random Forest
We finally decided to attempt random forest models which have proven to be
powerful in classification settings. Below, again, are the confusion matrices and
misclassification rates for the three groupings.

Men: test Women : test Combined: test

predicted A B Cc D predicted A B ¢ D predicted A B C D
A 380 112 44 6 A 328 89 33 6 A 717 197 82 12
B 76 344 99 24 B 40 160 53 13 B 108 501 153 39
c 7 62 394 60 c 2 26179 35 C 6 95 566 92
D 3 32 22 466 D 0 10 13 226 D 5 42 36 693

Misclassification rate: 25.67% pMisclassification rate: 26.383 Misclassification: 25.93%

Fig. 16: Confusion Matrices for Random Forest models.

Random Forest models see a 10% lower misclassification rate than that of the
previous models. This is an important finding because we have been able to explain
much more of the variation occurring in these data. Misclassifying one in four is much
better than one in three so in terms of modeling, this was a great success. However,
there is still a large portion of variance between these classes that has been left
unexplained and it is likely due to systemic issues in the data rather than finding better
methods. Being able to classify multi-factor problems becomes difficult but there are
other conclusions to be made.

16



Conclusion

In all, we attribute our models inability to classify with high precision to a few
factors. Foremost is that we were not able to access the unprocessed data set that
contains additional features which could have likely been able to improve predictive
power. Additionally, the nature of the classification criteria from the institution is
unknown but it is our belief that it was done generally subjectively. Given, someone's
judgment on a very fit or very unhealthy individual is probably realistic but defining the
boundaries around classes B and C could contribute to their high misclassifications.

In terms of reporting our models, with the rate at which they misclassify, these
likely are not ready to be used for more data. Having access to more features would be
our biggest improvement if we were to conduct a new round of the data collection.
Given how many subjects we had, the lack of explanation deriving from the features
caused this predictive weakness of final models.

In all, given the data we had, we created models that were able to predict
decently well. There was very high correct classification for classes A and D so fine
tuning those ends was a positive. Uncovering and understanding the interaction gender
had in this data set was a large obstacle but our proof allowed us a greater
understanding of the data and modeling as a whole. Being able to parse apart data and
understand how to gear models to best work on them is an important skill to have in
machine learning. In all, we are proud of our analysis and work.
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R-Code Appendix
Appendix A: R-Code

library(randomForest) # used for random forest models
library (caret) # used for create data partition
library (glmnet) # used for glmnet and cv.glmnet
library (MASS) # lda () command from here
library (scatterplot3d) # 3d plotting

library(rgl) # used for 3d plotting

library (rpart) # decisions trees
library(rpart.plot) # plotting decision trees
library (nnet) # multinom() command

# load data

heal <- read.csv("C:~/bodyPerformance.csv", header = T, stringsAsFactors = T)

# remove outliers

heal <- heal[-c (10625, 736, 2658, 3356, 337, 3525, 8252, 8563, 9487, 9769), 1
healS$Sgender <- ifelse(heal$gender == "M", 1, 0)

attach (heal)

# split into training and test

set.seed (bH)

heal.ind <- createDataPartition (healS$class, p = 0.75, list = F)
htrain <- heall[heal.ind, ]

htest <- heal[-heal.ind, ]

# split by gender

# health data men

hmen <- heall[heal$gender == 1, ]
# health data women

hwo <- heal[heal$gender == 0, ]

# training for the men

htrainMen <- htrainl[htrain$gender == 1,]
# remove gender column

htrainMen <- htrainMen[,-2]

# test set for the men

htestMen <- htest[htest$gender == 1,]

# remove gender column

htestMen <- htestMen|[,-2]

# training for the women

htrainWo <- htrainl[htrain$Sgender == 0, ]
# remove gender column
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htrainWo <- htrainWol[,-2]

# test set for the women

htestWo <- htest[htest$Sgender == 0, ]
# remove gender column

htestWo <- htestWol[,-2]

# histograms loop (actual histograms on page 4 of Appendix B)

vartitles <- c("Age", "Height (in cm)", "Weigth (in kg)", "Body Fat
Percentage", "Diastolic Blood Pressure (mmHg)", "Systolic Blood
Pressure (mmHg)", "Grip Force (kg)", "Sit and Bend Forward (cm)",
"Sit-Ups (max in 2min)", "Broad Jump (in cm)")

par(ask = T)
for(i in 1:10) {

Xmin <- min (min (hmen[, 1i]), min(hwo([, i]))

Xmax <- max (max (hmen[, 1]), max(hwo[, i]))

hist (hmen([, i], freq = F, main = paste("Hist of Mens", vartitles[i]),
xlab = vartitles[i], x1lim = ¢ (Xmin, Xmax), cex.main = 0.9)

i
hist (hwo[, 1], freq = F, main = paste("Hist of Womens", vartitles[i]),
i

4
xlab = vartitles[i], xlim = c¢(Xmin, Xmax), cex.main = 0.9)

# variable importance plot with matching RF model

set.seed (1)

rand <- randomForest (as.factor(class) ~ ., data = htrain, mtry =
5, ntree = 500, importance = T)

pred <- predict(rand, htest, response = "class")

tableRand <- table(pred, htestSclass)

tableRand

RANDrate <- (sum(tableRand[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13,
14, 15)]))/length(htestSclass)

RANDrate

varImpPlot (rand,main = "Random Forest Variable Importance")

# class by predictor plots split by gender (plots on page 5)

varnames <- hmen %>% names ()
classNumMen = 5-as.numeric (hmenS$class)
classNumWo = 5-as.numeric (hwoSclass)

classNum = 5-as.numeric(class)

par (ask = T)
for(i in 1:10){
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Xmin <- min(min (hmen[, 1]), min(hwo([, i]))

Xmax <- max (max (hmen[, i]), max(hwo[, i]))

plot (heal[, varnames[i]], classNum, cex.main = 0.9,
main paste("Class by ", vartitles[i]),

xlab = vartitles[i], ylab="Class (A =4, D= 1)",

type = "n",ylim = ¢ (.8,4.5), xlim = c(Xmin, Xmax))

points (hmen[, i], defaultjitter <-
.25+classNumMen+runif (length (classNumMen),-.1,.1),col="1ight blue",pch =
20,cex =.5)

points (hwo[, i],defaultjitter <-
classNumWo+runif (length (classNumWo),-.1, .1),col="orange",pch=20,cex = .5)

lines (lowess (hmen[, i],classNumMen),lwd =3, col = "blue")

lines (lowess (hwo([,1], classNumWo),lwd =3, col = "red")
}
par (ask=F)
# gender ~ all the features (not class)
healnoclass <- heall[, -12]
set.seed (1)
summary (genderLogit <- glm(gender ~ ., family = "binomial",

data = healnoclass))

# test/train table for that model
heal.ind <- createDataPartition (healnoclass$gender, p = 0.75, list = F)
gendertrain <- healnoclasslheal.ind, ]
gendertest <- healnoclass[-heal.ind, ]
summary (modell <- glm(gender ~ ., family = "binomial", data gendertrain))
predict gender <- predict(modell, newdata = gendertest, type "response")
prediction <- ifelse((predict gender > 0.5) == T, 1, 0)
validation <- gendertest[, 2]
gendertable <- table(prediction, validation)
gendertable
# multinomial for that model
multinomtrain <- multinom(class ~ ., data = as.data.frame (htrain))
summary (multinomtrain)
multipredict <- predict(multinomtrain, newdata = as.data.frame (htest), type
"class")
tablemulti <- table (multipredict, htest[, 12])
multirate <- (sum(tablemulti(c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,

15)1))/dim(ytest) [1]
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### Scale data for lda

scaletrain <- scale(htrain[, -c(2, 12)])

htrainclass <- htrain[, 12]

htrain <- cbind(scaletrain(, 1], htrain[, 2], scaletrain(, 2:10])
htrain <- as.data.frame (htrain)

htrain <- cbind(htrain, htrainclass)

colnames (htrain) <- c("age", "gender", "height cm", "weight kg", "body.fat .",

"diastolic",

"systolic", "gripForce", "sit.and.bend.forward cm",
"sit.ups.counts",

"broad.jump cm", "class")

scaletest <- scale(htest[, -c(2, 12)])

htestclass <- htest[, 12]

htest <- cbind(scaletest([, 1], htest[, 2], scaletest[, 2:10])
htest <- as.data.frame (htest)

htest <- cbind(htest, htestclass)

colnames (htest) <- c("age", "gender", "height cm", "weight kg", "body.fat .",

"diastolic",

"systolic", "gripForce", "sit.and.bend.forward cm",
"sit.ups.counts",

"broad.jump cm", "class")

htrainMen <- htrainl[htrain$gender == 1,]
htestMen <- htest[htest$gender == 1,]
htrainMen <- htrainMen[,-2]

htestMen <- htestMen|[,-2]

htrainWo <- htrainl[htrain$Sgender == 0,]
htestWo <- htest[htest$Sgender == 0,]
htrainWo <- htrainWol[,-2]

htestWo <- htestWol[,-2]

# Code for the models

#men

set.seed (1)

lda modelMen <- lda(class ~ ., data = htrainMen)

lda predMen <- predict(lda modelMen, newdata = htestMen)

#women

set.seed (1)

lda modelWo <- lda(class ~ ., data = htrainWo)

lda predWo <- predict (lda modelWo, newdata = htestWo)



#combined

set.seed (1)

lda model <- lda(class ~ ., data = htrain)

lda pred <- predict(lda model, newdata = htest)

# Code for confusion matrices

ldatableMen <- table(lda predMen$class, htestMen$class)

ldarateMen <- (sum(ldatableMen(c (2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15) 1)) /length (htestMenS$Sclass)

ldarateMen

ldatableWo <- table(lda predWo$class, htestWoSclass)

ldarateWo <- (sum(ldatableWo([c (2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)1))/length (htestWoS$class)

ldarateWo

ldatable <- table(lda pred$class, htest$class)

ldarate <- (sum(ldatable(c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)]1))/length (htestS$Sclass)

ldarate

# the model outputs with trace and coefficients
## Men model

lda modelMen

Coefficients of linear discriminants:

LD1 LD2 LD3
age -0.73037801 0.42269779 0.22496047
height_cm 0.03960235 -0.88237454 -0.43916774
weight_kg 0.435B0108 0.77781409 0.12904980
body. fat_. 0.28732691 0.49514210 0.41912277
diastolic 0.07777704 0.07084610 0.04969466
systolic -0.02614952 -0.03709755 0.04653755
gripForce -0.42976560 0.42460152 -0.66124941
sit.and.bend.forward_cm -0.78897416 -0.31862239 0.43608483
sit.ups.counts -0.94409339 0.47707790 0.61320611
broad. jump_cm -0.21704309 0.86995749 -0.76132197

Proportion of trace:
LD1 LD2 LD3
0.9772 0.0212 0.0016

## women model
lda modelWo

Coefficients of Tinear discriminants:

LD1 LD2 LD3
age -0.032599894 0.005990131 0.050498152
height_cm -0.006177785 -0.122495794 0.078887755
weight_kg 0.047127185 0.154883075 -0.054785249
body. fat_. 0.013031088 -0.072153290 0.122190077
diastolic 0.008031553 -0.005660678 -0.004577578
systolic -0.006225100 0.006638046 0.039948258
gripForce -0.060149004 0.033188371 -0.095515459
sit.and.bend. forward_cm -0.105126636 -0.038675469 -0.009769563
sit.ups.counts -0.069822082 0.013001510 0.022429796
broad. jump_cm -0.007032925 0.012505256 0.025843399

Proportion of trace:
LD1 LD2 LD3
0.9811 0.0181 0.0008



## combined model:

lda model
Coefficients of Tinear discriminants:
LDl LD2 LD3

age -0.62033433 0.28217283 0.47865574
gender 1.25691393 -2.85922000 2.69329518
height_cm -0.04204329 -0.88195343 -0.4155819%0
weight_kg 0.53013524 1.08029468 0.09903352
body. fat_. 0.16746747 0.14999505 0.51292670
diastolic 0.05820384 0.08446039 -0.02122693
systolic -0.02904503 -0.03165017 0.204939%66
gripForce -0.45535654 0.32482346 -0.45371688
sit.and.bend. forward_cm -0.80887043 -0.34366276 0.30641545
sit.ups.counts -1.00115377 0.40231156 0.46979746
broad. jump_cm -0.24744374 0.71777730 -0.07357977
Proportion of trace:

LD1 LDZ2 LD3
0.9782 0.0203 0.0015
# lda pairs graph
pairs(lda predS$x, pch = 20, col = as.numeric (htest$class),

main = "Pairs Plot of LD1, LD2, and LD3\nFor Combined LDA Model",

cex.main = 0.95)
# 3d plot

LDl <- preds[, 1]
LD2 <- preds[, 2]
predictedClass <- (5 - (lda _predS$Sclass $>% as.numeric())) %>% as.factor

()
plot3d(LDl, LD2, predictedClass, col = as.numeric (htest$class), size = 5,)

## Reload unscaled data
htrain <- heallheal.ind, ]
htest <- heal[-heal.ind, ]

hmen <- heall[heal$gender == 1,]
hwo <- heall[heal$gender == 0, ]

htrainMen <- htrainl[htrain$gender == 1,]
htestMen <- htest[htest$gender == 1,]
htrainMen <- htrainMen|[,-2]

htestMen <- htestMen[,-2]

htrainWo <- htrainl[htrain$Sgender == 0, ]
htestWo <- htest[htest$Sgender == 0, ]
htrainWo <- htrainWol[,-2]

htestWo <- htestWol[,-2]



########## polytomous regression ##########

# Code for the three models

#men

set.seed (1)

polyLMtrainMen <- glmnet(x = as.matrix (htrainMen[, 1:10]),y = htrainMen[, 11],

family = "multinomial",
lambda = 0,
type.multinomial = "ungrouped")
#women
set.seed (1)
polyLMtrainWo <- glmnet (x = as.matrix (htrainWo[, 1:10]), y = htrainWol[, 11],
family = "multinomial",
lambda = 0,
type.multinomial = "ungrouped")
#combined
set.seed (1)
polyLMtrain <- glmnet(x = as.matrix(htrain(,1:11]), y = htrain[,12] ,
family = "multinomial",
lambda = 0,
type.multinomial = "ungrouped")

# Code for confusion matrices

# predict Men

polyLMpredictMen <- predict (polyLMtrainMen, newx = as.matrix(htestMen|,
1:10]), type = "class")

#table

tablePOLYMen <- table(polyLMpredictMen, as.matrix(htestMen[, 11]))
tablePOLYMen

polyLMrateMen <- (sum(tablePOLYMen[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15) 1)) /length (htestMen$class)

polyLMrateMen

# predict women

polyLMpredictWo <- predict (polyLMtrainWo, newx = as.matrix (htestWo[, 1:10]),
type = "class")

#table

tablePOLYWo <- table(polyLMpredictWo, htestWo[, 11])

tablePOLYWo

polyLMrateWo <- (sum(tablePOLYWo[c (2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)1))/length (htestWoS$Sclass)

polyLMrateWo

# predict combined
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polyLMpredict <- predict (polyLMtrain, newx = as.matrix(htest[1l:11]), type =
"class")

#table

tablePOLY <- table (polyLMpredict, htest[,12])

tablePOLY

polyLMrate <- (sum(tablePOLY[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)1))/length (htestS$Sclass)

polyLMrate

# Polytomous model coefficients (coefficients on page 10 of
Appendix B)

coef (polyLMtrainMen)
coef (polyLMtrainWo)
coef (polyLMtrain)

$########## decision tree #######H###

# Code for the tree models
# Men Tree:
set.seed (1)
men.tree <- rpart(class~.,data = htrainMen,
method="'class',
control=rpart.control (minsplit=300,cp=.001,xval=10))

best <- men.tree$cptable[which.min (men.treeScptable[, "xerror"]),"CP"]

# store pruned tree
men.tree.pruned <- prune (men.tree, cp=best)

# Women tree:
set.seed (1)
women.tree <- rpart(class~.,data = htrainWo,
method='class',
control=rpart.control (minsplit=300,cp=.001,xval=10))

best <- women.tree$cptable[which.min (women.tree$Scptable[,"xerror"]),"CP"]

# store pruned tree
women.tree.pruned <- prune (women.tree, cp=best)

fcombined tree
set.seed (1)
full.tree <- rpart(class~.,data = htrain,
method='class',
control=rpart.control (minsplit=300,cp=.001,xval=10))

best <- full.tree$Scptable[which.min (full.tree$cptablel, "xerror"]),"CP"]
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# store pruned tree
full.tree.pruned <- prune(full.tree, cp=best)

# code for the tree confusion matrices

prunePredictMen <- predict (men.tree.pruned,newdata = htestMen, type="class")
treeTable <- table (prunePredictMen, htestMen$Sclass)

treeMCRateMen <- (sum(treeTable[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)1))/length (htestMenS$Sclass)

treeMCRateMen

prunePredictWo <- predict (women.tree.pruned,newdata = htestWo, type="class")
treeTable <- table (prunePredictWo,htestWoS$Sclass)

treeMCRateWo <- (sum(treeTable[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)]1))/length (htestWoS$class)

treeMCRateWo

prunePredict <- predict (full.tree.pruned,newdata = htest, type="class")
treeTable <- table (prunePredict,htest$class)

treeMCRate <- (sum(treeTable[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)1))/length (htestSclass)

treeMCRate

# code for tree plots (plots on page 2 of Appendix B)
prp (men.tree.pruned,
faclen=0,
extra=1,
roundint=F,
digits=b)
prp (women.tree.pruned,
faclen=0,
extra=1,
roundint=F,
digits=5)
prp(full.tree.pruned,
faclen=0,
extra=1,
roundint=F,
digits=5)
########## Random Forest ####iH#####

# Code for RandForest Models
set.seed (1)

randMen <- randomForest (as.factor(class) ~ ., data = htrainMen, mtry = 5,
ntree = 500, importance = T)

set.seed (1)

randWo <- randomForest (as.factor(class) ~ ., data = htrainWo, mtry = 5, ntree
= 500, importance = T)
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set.seed (1)

rand <- randomForest (as.factor(class) ~ ., data = htrain, mtry = 5, ntree

500, importance = T)

# Code for RandForest confusion matrices

predMen <- predict(rand, htestMen, response = "class")

tableRandMen <- table (pred, htestMen$class)

tableRandMen

RANDrateMen <- (sum(tableRandMen|[c (2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15) 1)) /length (htestMen$class)

RANDrateMen

predWo <- predict (randWo, htestWo, response = "class")

tableRandWo <- table (predWo, htestWo$class)

tableRandWo

RANDrateWo <- (sum(tableRandWo(c (2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)1))/length (htestWoS$Sclass)

RANDrateWo

pred <- predict(rand, htest, response = "class")

tableRand <- table (pred, htest$class)

tableRand

RANDrate <- (sum(tableRand[c(2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14,
15)1))/length (htest$class)

RANDrate



Plotting Appendix

Appendix B: R-Code

Inverse Covariance matrices

Male:

age height_cm weight kg body.fat . diastolic systolic gripForce sit.and.bend. forward_cm sit.ups.counts broad.jump_cm
age 2.06738401 0.50889130 0.01625329 0.31647054 -0.11399208 -0.212309242 -0.274326879 -0.39803505 1.13357989 1.0177543
height_cm 0.50889130 4.40357150 -2.85670618 2.00963216 -0.08725835 0.055899819 0.026807016 0.24011656 0.48527279 -0.1129907
weight_kg 0.01625329 -2.85670618 4.84882046 -3.00217941 0.16153613 -0.312861630 -1.530067045 0.06189519 -0.37238332 -0.2627791
body. fat_. 0.31647054 2.00963216 -3.00217941 4.21193251 -0.45383905 0.099495617 0.740274439 0.19617167 0.92848025 1.0654171
diastolic -0.11399208 -0.08725835 0.16153613 -0.45383905 1.92441574 -1.215959118 -0.113039546 -0.02567085 0.085399526 -0.1548212
systolic -0.21230924 0.05589982 -0.31286163 0.09949562 -1.21595912 2.062781096 -0.004121117 -0.07416615 -0.14414711 0.0934758
gripForce -0.27432688 0.02680702 -1.53006705 0.74027450 -0.11303955 -0.004121117 3.629625778 -0.26069633 -0.38217111 -0.8526089
sit.and.bend.forward_cm -0.39803505 0.24011656 0.06189519 0.19617167 -0.02567085 -0.074166145 -0.260696332 1.51154570 -0.58740344 -0.5856940
sit.ups.counts 1.13357989 0.48527279 -0.37238332 0.92848025 0.08599526 -0.144147106 -0.382171114 -0.58740344 3.48408060 -0.8251906
broad. jump_cm 1.01775425 -0.11299071 -0.26277913 1.06541711 -0.15482120 0.093475800 -0.852608830 -0.58569401 -0.82519056 4.7568828
Female:
age height_cm weight_kg body.fat_. diastolic systolic  gripForce sit.and.bend.forward_cm sit.ups.counts broad.jump_cm
age 1.9456056 0.79262246 -0.41465244 0.50161306 0.107441517 -0.46456733 -0.21968264 -0.268908852 0.32069508 0.88882037
height_cm 0.7926225 4.26813246 -2.82887826 1.75931931 -0.074911675 0.16285715 -0.09171451 0.084434013 0.16051193 -0.11106007
weight_kg -0.4146524 -2.82887826 6.60230334 -3.32639218 0.048459081 -0.34114375 -2.82738238 0.156589424 -0.01411102 -0.19481949
body. fat_. 0.5016131 1.75931931 -3.32639218 3.61875345 -0.151562338 -0.01985328 1.13010863 0.183598001 0.50264685 0.72748708
diastolic 0.1074415 -0.07491167 0.04845908 -0.15156234 2.004938701 -1.42592766 -0.14602935 -0.004036295 -0.03126943 -0.04299636
systolic -0.4645673 0.16285715 -0.34114375 -0.01985328 -1.425927665 2.22120206 -0.03838182 -0.094792707 -0.05358119 -0.03547421
gripForce -0.2196826 -0.09171451 -2.82738238 1.13010863 -0.146029347 -0.03838182 8.55688878 -0.464473866 -0.65893172 -1.19923475
sit.and.bend. forward_cm -0.2683089 0.08443401 0.15658942 0.18359800 -0.004036295 -0.09479271 -0.46447387 1.771146383 -0.48452701  -0.43542143
sit.ups.counts 0.9206951 0.16051193 -0.01411102 0.50264685 -0.031269433 -0.05358119 -0.65893172 -0.484527008 2.80583149 -1.28724741
broad. jump_cm 0.8888204 -0.11106007 -0.19481349 0.72748708 -0.042996356 -0.03547421 -1.19923475 -0.435421430 -1.28724741 4.91864096
Combined:
age gender  height_em weight_kg body.fat_. diastolic systolic  gripForce sit.and.bend.forward_cm sit.ups.counts broad.jump_cm
age 1.99627182 -2.1445744 0.61259377 -0.11333546 0.36661433 -0.04188943 -0.30186250 -0.24444856 -0.34604252 1.04236107 0.95513380
gender -2.14457442 23.2540876 -0.50424774 -2.68244212 2.63504353 -0.21856625 -0.42550778 -2.54874657 2.76768469 -0.51610635 -3.16117242
height_cm 0.61259377 -0.5042477 4.27432300 -2.75381050 1.83933472 -0.11310051 0.12805588 0.02872552 0.19054818 0.29298594 -0.12525114
weight_kg -0.11333546 -2.6824421 -2.75381050 5.18677089 -2.95570380 0.15895177 -0.36555789 -1.82931001 0.09895957 -0.18577816 -0.22387910
body. fat_. 0.36661433 2.6350435 1.83933472 -2.95570380 3.85602341 -0.36081260 0.08465311 0.83422854 0.19146344 0.70255671 0.91004526
diastolic -0.04188943 -0.2185662 -0.11310051 0.15895177 -0.36081260 1.92131580 -1.26753930 -0.09767443 -0.01623881 0.01284794 -0.11421589
systolic -0.30186250 -0.4255078 0.12805588 -0.36555789 0.08465311 -1.26753930 2.09207925 -0.01775144 -0.07824007 -0.08903963 0.04535591
gripForce -0.24444856 -2.5487466 0.02872552 -1.82931001 0.83422854 -0.09767443 -0.01775144 4.55255871 -0.32141363 -0.38561909 -0.92141927
sit.and.bend. forward_cm -0.34604252 2.7676847 0.19054818 0.09895957 0.19146344 -0.01623881 -0.07824007 -0.32141363 1.58550434 -0.53455220 -0.53260536
sit.ups.counts 1.04236107 -0.5161063 0.29298594 -0.18577816 0.70255671 0.01284794 -0.08903963 -0.38561909 -0.53455220 3.11767737  -1.02352808
broad. jump_cm 0.95513380 -3.1611724 -0.12525114 -0.22387910 0.91004526 -0.11421589 0.04535591 -0.92141927 -0.53260536 -1.02352808 4.78370911
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Class by
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Polytomous model Coefficients

Men Women Combined
5A $A 5A
11 x 1 sparse Matrix of class "dgtMatrix” 11 x 1 sparse Matrix of class "dgCMatrix" 12 x 1 sparse Matrix of class "dgCMatrix"
s0 s0 s0
-16.257892538 -13.108436317 -1.354249e+01
age 0.132952601 age 0.074056411 age 1.061989%e-01
height_cm 0.001614372 height_cm 0.006526596 gender -3.282601e+00
weight_kg -0.097841009 weight_kg -0.080028239 height_cm 5.940942e-03
body. fat_. 0.002314337 body. fat_. -0.026525755 weight_kg -9.727844e-02
diastolic -0.017443927 diastolic -0.012339459 body. fat_. —6-836461&06
systolic 0.007428746 systolic 0.007928130 diastolic -1.270653e-02
gripForce 0.117358669 gripForce 0.156594605 systolic 3.550209e-03
sit.and.bend. forward_cm  0.211515170 sit.and.bend. forward_cm  0.260927745 P ruard %3%3{3‘368}
sit.ups.counts 0.153018681 sit.ups.counts 0.124099172 E}E-ﬁgs-csﬂn-ts"”'a’ —cm 1-3996'96?01
broad. jump_cm 0.025913205 broad. jump_cm 0.018223597 broad. jump_cm 2.172560e-02
B $B
11 x 1 sparse Matrix of class "dgcmigr"ix” 11 x 1 sparse Matrix of class "dgCMzgm‘x" f? X 1 sparse Matrix of class "dgCMatrix"
0
-0.9755940508 -1.1844851025 1300786200
age 0.0374251068 age 0.0203524352 age 3 1240776-02
height_cm -0.0016143716 height_cm -0.0065265958 gender -6.953194e-01
weight_kg -0.0199072354 weight_kg -0.0006323798 height_cm -5.940942e-03
body. fat_. -0.0023143367 body.fat_. -0.0145052930 weight_kg -1.707024e-02
diastolic -0.0024093058 diastolic -0.0051168478 body. fat_. 6.816461e-06
systolic 0.0008323325 systolic 0.0040528210 diastolic -2.106819e-03
gripForce 0.0282450518 gripForce 0.0301378964 systolic 1.124110e-03
sit.and.bend. forward_cm 0.0556773583 sit.and.bend. forward_cm 0.0640965020 gripForce 2.741892e-02
sit.ups.counts 0.0425930473 sit.ups.counts 0.0340611049 sit.and.bend. forward_cm 5.709150e-02
broad. jump_cm 0.0054600362 broad. jump_cm 0.0070636471 sit.ups.counts 3.964238e-02
broad. jump_cm 5.750035e-03
$C $C
11 x 1 sparse Matrix of class "dgCMatrix" 11 x 1 sparse Matrix of class "dgCMatrix” sc . N o
50 <0 12 x 1 sparse Matrix of class dgCMagmx
4.9313359035 0.9826091743 >
age -0.0374251068 age ~0.0203524352 a0e _gégfgjéééfg
height_cm 0.0226024612 height_cm 0.0367939646 g : 37
. . gender 0.6953193771
weight_kg 0.0199072354 weight_kg 0.0006323798 height_cm 0. 0175833457
bc_:dy.fa‘_c,. -0.0093835832 body. fat_. 0.0145052930 We-ightikg 0.0170702363
diastolic 0.0024093058 diastolic 0.0051168478 body. fat_. -0.0006626738
systolic -0.0008323325 systolic -0.0040528210 diastolic 0.0021068187
gripForce -0.0282450518 gripForce -0.0301378964 systolic -0.0011241098
s‘l_t.and.bend.forwar‘d_cm -0.0556773583 sit.and.bend. forward_cm -0.0640965020 gripForce -0.0274189156
sit.ups.counts -0.0425930473 sit.ups.counts -0.0340611049 sit.and.bend. forward_cm -0.0570915041
broad. jump_cm -0.0054600362 broad. jump_cm -0.0070636471 sit.ups.counts -0.0396423844
broad. jump_cm -0.0057500347
5D sD
11 x 1 sparse Matrix of class "dgCMatrix" i " ik $D
P g =0 11 x 1 sparse Matrix of class dggh&a‘cﬂx 12 x 1 sparse Matrix of class "dgMatrix"
12.302150685 13.31031225 s0
age -0.109929442 age Z0.08157099 1 taagassss
height_cm -0.012246148 height_cm _0.02098232 age -u.uses
- ! — - gender 2.144757860
weight_kg 0.104900617 weight_kg 0.14539841 height_cm -0.030972035
body. fat_. 0.096137726 hody. £ 0.03089382 i i -

0 ‘ ody. fat_. . weight_kg 0.120938808
diastolic 0.020276382 diastolic 0.01779746 body. fat_. 0.071967102
systolic -0.007808630 systolic -0.01420924 diastolic 0.017078613
griprorce -0.081599869 gripForce -0.10816542 systolic -0.008296577
sit.and.bend. forward_cm -0.210170559 sit.and.bend.forward_cm -0.22130777 gripForce ~0.085244101
sit.ups.counts -0.139435441 sit.ups.counts ~0.15544994 sit.and.bend.forward_cm -0.209842633
broad. jump_cm -0.006421233 broad. jump_cm ~0.01159821 sit.ups.counts -0.145777487

- broad. jump_cm -0.008516619
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